题目内容

由函数y=f(x)确定数列{an},an=f(n),函数y=f(x)的反函数y=f-1(x)能确定数列{bn},bn=f-1(n),若对于任意n?N*,都有bn=an,则称数列{bn}是数列{an}的“自反数列”.
(1)若函数f(x)=
px+1
x+1
确定数列{an}的自反数列为{bn},求an
(2)在(1)条件下,记
n
1
x1
+
1
x2
+…
1
xn
为正数数列{xn}的调和平均数,若dn=
2
an+1
-1
,Sn为数列{dn}的前n项之和,Hn为数列{Sn}的调和平均数,求
lim
n→∞
=
Hn
n

(3)已知正数数列{cn}的前n项之和Tn=
1
2
(Cn+
n
Cn
)
.求Tn表达式.
分析:(1)先求出函数y=f(x)的反函数y=f-1(x),根据bn=f-1(n)可求出p,即可求出an
(2)先求出dn,然后求出sn,根据Hn为数列{Sn}的调和平均数,可求出Hn的关系式,从而求出
lim
n→∞
=
Hn
n

(3)先根据正数数列{cn}的前n项之和Tn=
1
2
(cn+
n
cn
)
求出c1,当n≥2时,cn=Tn-Tn-1,所以Tn2-Tn-12=n,然后利用叠加法求出Tn表达式即可.
解答:解:(1)由题意的:f-1(x)=
1-x
x-p
=f(x)=
px+1
x+1
,所以p=-1,(2分)
所以an=
-n+1
n+1
(3分)
(2)an=
-n+1
n+1
dn=
2
an+1
-1=n
,(4分)
sn为数列{dn}的前n项和,sn=
n(n+1)
2
,(5分)
又Hn为数列{Sn}的调和平均数,
所以Hn=
n
1
s1
+
1
s2
+…
1
sn
=
n
2
1×2
+
2
3×2
+…
2
n(n-1)
=
(n+1)
2
(8分)
lim
n→o
 
Hn
n
=
lim
n→o
n+1
2n
=
1
2
(10分)
(3)因为正数数列{cn}的前n项之和Tn=
1
2
(cn+
n
cn
)

所以c1=
1
2
(c1+
n
c1
)
解之得:c1=1,T1=1(11分)
当n≥2时,cn=Tn-Tn-1,所以2Tn=Tn-Tn1+
n
Tn-Tn1

Tn-Tn-1=
n
Tn-Tn-1
即Tn2-Tn-12=n(14分)
所以,T2n-1-T2n-2=n-1,T2n-2-T2n-3=n-2,…T22-T12=2累加得:
Tn2-T12=2+3+4+…+n2(16分)
T
2
n
=1+2+3+4+…+n=
n(n+1)
2
Tn=
(n+1)n
2
(18分)
点评:本题主要考查了反函数以及数列与函数的综合问题,同时考查了数列的求和以及累加法,属于难题.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网