题目内容

若函数y=f(x)存在反函数y=f-1(x),由函数y=f(x)确定数列{an},an=f(n),由函数y=f-1(x)确定数列{bn},bn=f-1(n),则称数列{bn}是数列{an}的“反数列”.
(1)若数列{bn}是函数f(x)=
x+1
2
确定数列{an}的反数列,试求数列{bn}的前n项和Sn
(2)若函数f(x)=2
x
确定数列{cn}的反数列为{dn},求{dn}的通项公式;
(3)对(2)题中的{dn},不等式
1
dn+1
+
1
dn+2
+…+
1
d2n
1
2
log(1-2a)对任意的正整数n恒成立,求实数a的取值范围.
分析:(1)由f(x)=
x+1
2
,知f-1(x)=2x-1,所以bn=2n-1,由此能求出Sn
(2)由f(x)=2
x
,知f-1(x)=
x2
4
,由此能求出{dn}的通项公式.
(3)记Tn=
1
dn+1
+
1
dn+2
+…+
1
d2n
,得Tn=
2
n+1
+
2
n+2
+…+
2
2n
,故Tn+1-Tn=
2
2n+1
-
2
2n+2
>0,由此能求出实数a的取值范围.
解答:解:(1)∵f(x)=
x+1
2

∴f-1(x)=2x-1,
所以bn=2n-1,
Sn=2(1+2+3+…+n)-n
=2×
n(n+1)
2
-n=n2.(4分)
(2)∵f(x)=2
x
,∴f-1(x)=
x2
4

所以dn=
n2
4

(3)记Tn=
1
dn+1
+
1
dn+2
+…+
1
d2n

Tn=
2
n+1
+
2
n+2
+…+
2
2n

Tn+1-Tn=
2
2n+1
-
2
2n+2
>0,
所以{Tn}递增,故(Tnmin=T1=1.
由已知得,
1
2
loga(1-2a)<1

解得0<a<
2
-1

∴实数a的取值范围是(0,
2
-1
).
点评:本题考查数列与函数的综合应用,解题时要认真审题,仔细解答,注意反函数的合理运用,合理地进行等价转化.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网