题目内容
【题目】对于不等式,则对区间上的任意x都成立的实数t的取值范围是_______.
【答案】
【解析】
根据二次函数的单调性求出x2﹣3x+2在区间[0,2]上的最小值和最大值,把问题转化关于t的不等式组得答案.
∵x2﹣3x+2=,
∴当x∈[0,2]时,,(x2﹣3x+2)max=2.
∴.
∴对于不等式(2t﹣t2)≤x2﹣3x+2≤3﹣t2,对区间[0,2]上任意x都成立的实数t的取值范围是[﹣1,1﹣].
故答案为:[﹣1,1﹣].
【点睛】
本题考查函数恒成立问题,考查了不等式的解法,体现了数学转化思想方法,是基础题.二次不等式分含参二次不等式和不含参二次不等式;对于含参的二次不等式问题,先判断二次项系数是否含参,接着讨论参数等于0,不等于0,再看式子能否因式分解,若能够因式分解则进行分解,再比较两根大小,结合图像得到不等式的解集.
【题型】填空题
【结束】
16
【题目】等差数列{an}的公差d≠0满足成等比数列,若=1,Sn是{}的前n项和,则的最小值为________.
【答案】4
【解析】
成等比数列,=1,可得:= ,即(1+2d)2=1+12d,d≠0,解得d.可得an,Sn.代入利用分离常数法化简后,利用基本不等式求出式子的最小值.
∵成等比数列,a1=1,
∴= ,
∴(1+2d)2=1+12d,d≠0,
解得d=2.
∴an=1+2(n﹣1)=2n﹣1.
Sn=n+×2=n2.
∴==n+1+﹣2≥2﹣2=4,
当且仅当n+1=时取等号,此时n=2,且取到最小值4,
故答案为:4.
练习册系列答案
相关题目