题目内容

已知数列{an}是首项为a1,各项均为正数的等比数列,其前n项和为Sn,且有5S2=4S4
(1)求数列{an}的公比q;
(2)设bn=q+Sn,试问{bn}是否为等比数列?若是求出a1的值;若不是说明理由.
(1)若q=1,5S2=10a1,4S4=16a1,不满足5S2=4S4,故q≠1…(2分)
由5S2=4S45
a1(1-q2)
1-q
=4
a1(1-q4)
1-q
,1+q2=
5
4
q2=
1
4

∵an>0,∴q=
1
2
…(5分)
(2)假设满足条件的等比数列{bn}存在.
由(1)得Sn=
a1[1-(
1
2
)
n
]
1-
1
2
=2a1[1-(
1
2
)n]
,∴bn=
1
2
+2a1[1-(
1
2
)n]
,…(8分)
∵{bn}是等比数列,∴b1,b2,b3成等比数列,∴
b22
=b1b3

(
3
2
a1+
1
2
)2=(a1+
1
2
)(
7
4
a1+
1
2
)
,整理得4
a21
+a1=0
,得a1=0或a1=-
1
4
…(11分)
这与数列{an}各项均为正数矛盾,故数列{bn}不存在.…(12分)
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网