题目内容
【题目】已知命题p:方程x2-2mx+m=0没有实数根;命题q:x∈R,x2+mx+1≥0.
(1)写出命题q的否定“q”.
(2)如果“p∨q”为真命题,“p∧q”为假命题,求实数m的取值范围.
【答案】(1)q:x0∈R,+mx0+1<0.(2)-2≤m≤0或1≤m≤2.
【解析】分析:(1)根据命题否定的定义进行求解即可;
(2)根据复合命题真假关系进行判断即可.
详解:(1)q:x0∈R,+mx0+1<0.
(2)若方程x2-2mx+m=0没有实数根,则Δ=4m2-4m<0,解得0<m<1,即p:0<m<1.
若x∈R,x2+mx+1≥0,则m2-4≤0,解得-2≤m≤2,即q:-2≤m≤2.
因为“p∨q”为真命题,“p∧q”为假命题,所以p,q两命题应一真一假,即p真q假或p假q真.
则或
解得-2≤m≤0或1≤m≤2.
【题目】某教师调查了名高三学生购买的数学课外辅导书的数量,将统计数据制成如下表格:
男生 | 女生 | 总计 | |
购买数学课外辅导书超过本 | |||
购买数学课外辅导书不超过本 | |||
总计 |
(Ⅰ)根据表格中的数据,是否有的把握认为购买数学课外辅导书的数量与性别相关;
(Ⅱ)从购买数学课外辅导书不超过本的学生中,按照性别分层抽样抽取人,再从这人中随机抽取人询问购买原因,求恰有名男生被抽到的概率.
附: , .
【题目】某校在本校任选了一个班级,对全班50名学生进行了作业量的调查,根据调查结果统计后,得到如下的列联表,已知在这50人中随机抽取1人,认为作业量大的概率为.
认为作业量大 | 认为作业量不大 | 合计 | |
男生 | 18 | ||
女生 | 17 | ||
合计 | 50 |
(Ⅰ)请完成上面的列联表;
(Ⅱ)根据列联表的数据,能否有的把握认为“认为作业量大”与“性别”有关?
附表:
0.100 | 0.050 | 0.025 | 0.010 | 0.001 | |
2.706 | 3.841 | span>5.024 | 6.635 | 10.828 |
附:
【题目】上海中学在每学年的上学期会举行体育嘉年华活动,假设在今年的活动中共设了8个体育项目,高一某班的班主任参加了其中的若干个项目,甲、乙、丙三位同学猜测该老师参加的项目见下表:(“×”表示未参加,“√”表示参加)
项目1 | 项目2 | 项目3 | 项目4 | 项目5 | 项目6 | 项目7 | 项目8 | |
甲 | √ | × | × | × | × | √ | × | √ |
乙 | × | √ | √ | × | × | × | √ | × |
丙 | √ | × | √ | √ | √ | × | × | × |
老师告诉甲、乙、丙:“你们分别猜对5次、5次、6次”,由此请你猜测该老师参加的体育项目编号依次为________