ÌâÄ¿ÄÚÈÝ
ÔڵȲîÊýÁÐ{an}ÖУ¬a1=3£¬ÆäÇ°nÏîºÍΪSn£¬µÈ±ÈÊýÁÐ{bn}µÄ¸÷Ïî¾ùΪÕýÊý£¬b1=1£¬¹«±ÈΪq,ÇÒb2+ S2=12£¬.£¨¢ñ£©Çóan Óëbn£»£¨¢ò£©ÉèÊýÁÐ{cn}Âú×㣬Çó{cn}µÄÇ°nÏîºÍTn.
¡¾½âÎö¡¿±¾ÊÔÌâÖ÷ÒªÊÇ¿¼²éÁ˵ȱÈÊýÁеÄͨÏʽºÍÇóºÍµÄÔËÓᣵÚÒ»ÎÊÖУ¬ÀûÓõȱÈÊýÁÐ{bn}µÄ¸÷Ïî¾ùΪÕýÊý£¬b1=1£¬¹«±ÈΪq,ÇÒb2+ S2=12£¬£¬¿ÉµÃ£¬½âµÃq=3»òq=-4(Éá),d=3.µÃµ½Í¨Ïʽ¹Êan=3+3(n-1)=3n, bn=3 n-1. µÚ¶þÎÊÖУ¬£¬ÓɵÚÒ»ÎÊÖÐÖªµÀ£¬È»ºóÀûÓÃÁÑÏîÇóºÍµÃµ½Tn.
½â£º (¢ñ) É裺{an}µÄ¹«²îΪd,
ÒòΪ½âµÃq=3»òq=-4(Éá),d=3.
¹Êan=3+3(n-1)=3n, bn=3 n-1. ¡¡¡6·Ö
(¢ò)ÒòΪ¡¡¡¡¡8·Ö
¡¾´ð°¸¡¿
(¢ñ) an=3+3(n-1)=3n, bn=3 n-1. (¢ò
Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿