题目内容

在等差数列{an}中,已知a1=2,a2+a3=13,则a4+a5+a6等于=
42
42
分析:由等差数列的通项公式化简a2+a3=13,得到关于首项和公差的关系式,把首项的值当然即可求出公差d的值,然后再利用等差数列的通项公式把所求的式子化为关于首项和公差的关系式,将首项和公差的值代入即可求出值.
解答:解:由a2+a3=2a1+3d=13,又a1=2,
得到3d=9,解得d=3,
则a4+a5+a6=a1+3d+a1+4d+a1+5d=3a1+12d=6+36=42.
故答案为:42
点评:此题考查学生灵活运用等差数列的通项公式化简求值,是一道基础题.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网