ÌâÄ¿ÄÚÈÝ
10£®ÔÚÖ±½Ç×ø±êϵxoyÖУ¬Ö±ÏßlµÄ²ÎÊý·½³ÌΪ$\left\{{\begin{array}{l}{x=3-\frac{{\sqrt{2}}}{2}t}\\{y=\sqrt{5}+\frac{{\sqrt{2}}}{2}t}\end{array}}$£¨tΪ²ÎÊý£©£¬ÔÚ¼«×ø±êϵÖУ¬Ô²CµÄ·½³ÌΪ¦Ñ=2$\sqrt{5}$sin¦È£®£¨1£©ÇóÔ²CµÄÖ±½Ç×ø±êϵ·½³Ì£»
£¨2£©ÉèÔ²CÓëÖ±Ïßl½»ÓÚµãA¡¢B£¬ÈôµãPµÄ×ø±êΪ$£¨3£¬\sqrt{5}£©$£¬Çó|PA|+|PB|£®
×¢£º¼«×ø±êϵÓëÖ±½Ç×ø±êϵxoyÈ¡ÏàͬµÄµ¥Î»³¤¶È£¬ÇÒÒÔÔµãOΪ¼«µã£¬ÒÔxÖáÕý°ëÖáΪ¼«Öᣮ
·ÖÎö £¨1£©Ö±½ÓÀûÓü«×ø±êÓëÖ±½Ç×ø±êת»¯·¨Ôò£¬»¯¼òÇó½â¼´¿É£®
£¨2£©½«lµÄ²ÎÊý·½³Ì´úÈëÔ²CµÄÖ±½Ç×ø±ê·½³Ì£¬ÀûÓòÎÊý·½³Ì²ÎÊýtµÄ¼¸ºÎÒâÒåÍƳö½á¹û¼´¿É£®
½â´ð ½â£º£¨1£©ÓɦÑ=2$\sqrt{5}$sin¦ÈµÃ£ºx2+y2-2$\sqrt{5}y$=0¼´x2+£¨y-$\sqrt{5}$£©2=5£®
£¨2£©½«lµÄ²ÎÊý·½³Ì´úÈëÔ²CµÄÖ±½Ç×ø±ê·½³ÌµÃ£º
$£¨3-\frac{\sqrt{2}}{2}t£©^{2}+£¨\frac{\sqrt{2}}{2}t£©^{2}=5$¼´t2-3$\sqrt{2}t$+4=0£®
ÓÉÓÚ¡÷=$£¨3\sqrt{2}£©^{2}-4¡Á4=2£¾0$¹Ê¿ÉÉèt1£¬t2Ϊ·½³ÌµÄÁ½Êµ¸ù
ËùÒÔ$\left\{\begin{array}{l}{t}_{1}+{t}_{2}=3\sqrt{2}\\{t}_{1}•{t}_{2}=4\end{array}\right.$ÓÖÖ±Ïßl¹ýµãP£¨3£¬$\sqrt{5}$£©£®
¹ÊÓÉÉÏʽ¼°tµÄ¼¸ºÎÒâÒåµÃ£º|PA|+|PB|=|t1|+|t2||=t1+t2=3$\sqrt{2}$£®
µãÆÀ ±¾Ì⿼²é¼«×ø±êÓëÖ±½Ç×ø±ê·½³ÌµÄ»¥»¯£¬²ÎÊý·½³ÌµÄ¼¸ºÎÒâÒ壬¿¼²é¼ÆËãÄÜÁ¦£®
Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿
5£®Ä³¸ßУ¹²ÓÐѧÉú15 000ÈË£¬ÆäÖÐÄÐÉú10 500ÈË£¬Å®Éú4500ÈË£®Îªµ÷²é¸ÃУѧÉúÿÖÜƽ¾ùÌåÓýÔ˶¯Ê±¼äµÄÇé¿ö£¬²ÉÓ÷ֲã³éÑùµÄ·½·¨£¬ÊÕ¼¯300λѧÉúÿÖÜƽ¾ùÌåÓýÔ˶¯Ê±¼äµÄÑù±¾Êý¾Ý£¨µ¥Î»£ºÐ¡Ê±£©£®
£¨1£©Ó¦ÊÕ¼¯¶àÉÙλŮÉúµÄÑù±¾Êý¾Ý£¿
£¨2£©¸ù¾ÝÕâ300¸öÑù±¾Êý¾Ý£¬µÃµ½Ñ§ÉúÿÖÜƽ¾ùÌåÓýÔ˶¯Ê±¼äµÄƵÂÊ·Ö²¼Ö±·½Í¼£¨ÈçͼËùʾ£©£¬ÆäÖÐÑù±¾Êý¾ÝµÄ·Ö×éÇø¼äΪ£º[0£¬2]£¬£¨2£¬4]£¬£¨4£¬6]£¬£¨6£¬8]£¬£¨8£¬10]£¬£¨10£¬12]£®¹À¼Æ¸ÃУѧÉúÿÖÜƽ¾ùÌåÓýÔ˶¯Ê±¼ä³¬¹ý4СʱµÄ¸ÅÂÊ£®
£¨3£©ÔÚÑù±¾Êý¾ÝÖУ¬ÓÐ60λŮÉúµÄÿÖÜƽ¾ùÌåÓýÔ˶¯Ê±¼ä³¬¹ý4Сʱ£¬ÇëÍê³ÉÿÖÜƽ¾ùÌåÓýÔ˶¯Ê±¼äÓëÐÔ±ðÁÐÁª±í£¬²¢ÅжÏÊÇ·ñÓÐ95%µÄ°ÑÎÕÈÏΪ¡°¸ÃУѧÉúµÄÿÖÜƽ¾ùÌåÓýÔ˶¯Ê±¼äÓëÐÔ±ðÓйء±£®
¸½£ºK2=$\frac{n£¨ad-bc£©^{2}}{£¨a+b£©£¨c+d£©£¨a+c£©£¨b+d£©}$£®
£¨1£©Ó¦ÊÕ¼¯¶àÉÙλŮÉúµÄÑù±¾Êý¾Ý£¿
£¨2£©¸ù¾ÝÕâ300¸öÑù±¾Êý¾Ý£¬µÃµ½Ñ§ÉúÿÖÜƽ¾ùÌåÓýÔ˶¯Ê±¼äµÄƵÂÊ·Ö²¼Ö±·½Í¼£¨ÈçͼËùʾ£©£¬ÆäÖÐÑù±¾Êý¾ÝµÄ·Ö×éÇø¼äΪ£º[0£¬2]£¬£¨2£¬4]£¬£¨4£¬6]£¬£¨6£¬8]£¬£¨8£¬10]£¬£¨10£¬12]£®¹À¼Æ¸ÃУѧÉúÿÖÜƽ¾ùÌåÓýÔ˶¯Ê±¼ä³¬¹ý4СʱµÄ¸ÅÂÊ£®
£¨3£©ÔÚÑù±¾Êý¾ÝÖУ¬ÓÐ60λŮÉúµÄÿÖÜƽ¾ùÌåÓýÔ˶¯Ê±¼ä³¬¹ý4Сʱ£¬ÇëÍê³ÉÿÖÜƽ¾ùÌåÓýÔ˶¯Ê±¼äÓëÐÔ±ðÁÐÁª±í£¬²¢ÅжÏÊÇ·ñÓÐ95%µÄ°ÑÎÕÈÏΪ¡°¸ÃУѧÉúµÄÿÖÜƽ¾ùÌåÓýÔ˶¯Ê±¼äÓëÐÔ±ðÓйء±£®
P£¨K2¡Ýk0£© | 0.10 | 0.05 | 0.010 | 0.005 |
k0 | 2.706 | 3.841 | 6.635 | 7.879 |
15£®ÉèÈ«¼¯U=R£¬A={x|0£¼x£¼2}£¬B={x|x£¼1}£¬ÔòͼÖÐÒõÓ°²¿·Ö±íʾµÄ¼¯ºÏΪ£¨¡¡¡¡£©
A£® | {x|x¡Ý1} | B£® | {x|0¡Üx¡Ü1} | C£® | {x|1¡Üx£¼2} | D£® | {x|x¡Ü1} |
2£®´ò÷ý²»½öÓ°Ïì±ðÈËÐÝÏ¢£¬¶øÇÒ¿ÉÄÜÓ뻼ijÖÖ¼²²¡Óйأ®±íÊÇÒ»´Îµ÷²éËùµÃµÄÊý¾Ý£¬
£¨1£©½«±¾ÌâµÄ2*2Áª±í¸ñ²¹³äÍêÕû£®
£¨2£©ÓÃÌáʾµÄ¹«Ê½¼ÆË㣬ÿһÍí¶¼´ò÷ýÓ뻼ÐÄÔಡÓйØÂð£¿
Ìáʾ
K2=$\frac{n£¨ad-bc£©^{2}}{£¨a+b£©£¨c+d£©£¨a+c£©£¨b+d£©}$
£¨1£©½«±¾ÌâµÄ2*2Áª±í¸ñ²¹³äÍêÕû£®
£¨2£©ÓÃÌáʾµÄ¹«Ê½¼ÆË㣬ÿһÍí¶¼´ò÷ýÓ뻼ÐÄÔಡÓйØÂð£¿
Ìáʾ
P£¨K2¡Ýk£© | 0.100 | 0.050 | 0.010 | 0.001 |
k | 2.706 | 3.841 | 6.635 | 10.828 |
»¼ÐÄÔಡ | δ»¼ÐÄÔಡ | ºÏ¼Æ | |
ÿһÍí¶¼´ò÷ý | 3 | 17 | a= |
²»´ò÷ý | 2 | 128 | b= |
ºÏ¼Æ | c= | d= | n= |
19£®ÏÂÃæÊÇÒ»¸ö2¡Á2ÁÐÁª±í£ºÔò±íÖÐa¡¢b´¦µÄÖµ·Ö±ðΪ£¨¡¡¡¡£©
y1 | y2 | ×Ü¼Æ | |
x1 | a | 21 | 73 |
x2 | 8 | 25 | 33 |
×Ü¼Æ | b | 46 |
A£® | 94£¬96 | B£® | 52£¬50 | C£® | 52£¬60 | D£® | 54£¬52 |