ÌâÄ¿ÄÚÈÝ

10£®ÔÚÖ±½Ç×ø±êϵxoyÖУ¬Ö±ÏßlµÄ²ÎÊý·½³ÌΪ$\left\{{\begin{array}{l}{x=3-\frac{{\sqrt{2}}}{2}t}\\{y=\sqrt{5}+\frac{{\sqrt{2}}}{2}t}\end{array}}$£¨tΪ²ÎÊý£©£¬ÔÚ¼«×ø±êϵÖУ¬Ô²CµÄ·½³ÌΪ¦Ñ=2$\sqrt{5}$sin¦È£®
£¨1£©ÇóÔ²CµÄÖ±½Ç×ø±êϵ·½³Ì£»
£¨2£©ÉèÔ²CÓëÖ±Ïßl½»ÓÚµãA¡¢B£¬ÈôµãPµÄ×ø±êΪ$£¨3£¬\sqrt{5}£©$£¬Çó|PA|+|PB|£®
×¢£º¼«×ø±êϵÓëÖ±½Ç×ø±êϵxoyÈ¡ÏàͬµÄµ¥Î»³¤¶È£¬ÇÒÒÔÔ­µãOΪ¼«µã£¬ÒÔxÖáÕý°ëÖáΪ¼«Öᣮ

·ÖÎö £¨1£©Ö±½ÓÀûÓü«×ø±êÓëÖ±½Ç×ø±êת»¯·¨Ôò£¬»¯¼òÇó½â¼´¿É£®
£¨2£©½«lµÄ²ÎÊý·½³Ì´úÈëÔ²CµÄÖ±½Ç×ø±ê·½³Ì£¬ÀûÓòÎÊý·½³Ì²ÎÊýtµÄ¼¸ºÎÒâÒåÍƳö½á¹û¼´¿É£®

½â´ð ½â£º£¨1£©ÓɦÑ=2$\sqrt{5}$sin¦ÈµÃ£ºx2+y2-2$\sqrt{5}y$=0¼´x2+£¨y-$\sqrt{5}$£©2=5£®
£¨2£©½«lµÄ²ÎÊý·½³Ì´úÈëÔ²CµÄÖ±½Ç×ø±ê·½³ÌµÃ£º
$£¨3-\frac{\sqrt{2}}{2}t£©^{2}+£¨\frac{\sqrt{2}}{2}t£©^{2}=5$¼´t2-3$\sqrt{2}t$+4=0£®
ÓÉÓÚ¡÷=$£¨3\sqrt{2}£©^{2}-4¡Á4=2£¾0$¹Ê¿ÉÉèt1£¬t2Ϊ·½³ÌµÄÁ½Êµ¸ù
ËùÒÔ$\left\{\begin{array}{l}{t}_{1}+{t}_{2}=3\sqrt{2}\\{t}_{1}•{t}_{2}=4\end{array}\right.$ÓÖÖ±Ïßl¹ýµãP£¨3£¬$\sqrt{5}$£©£®
¹ÊÓÉÉÏʽ¼°tµÄ¼¸ºÎÒâÒåµÃ£º|PA|+|PB|=|t1|+|t2||=t1+t2=3$\sqrt{2}$£®

µãÆÀ ±¾Ì⿼²é¼«×ø±êÓëÖ±½Ç×ø±ê·½³ÌµÄ»¥»¯£¬²ÎÊý·½³ÌµÄ¼¸ºÎÒâÒ壬¿¼²é¼ÆËãÄÜÁ¦£®

Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿

Î¥·¨ºÍ²»Á¼ÐÅÏ¢¾Ù±¨µç»°£º027-86699610 ¾Ù±¨ÓÊÏ䣺58377363@163.com

¾«Ó¢¼Ò½ÌÍø