题目内容
【题目】甲、乙两人做游戏,下列游戏不公平的是( )
A. 抛掷一枚骰子,向上的点数为奇数则甲获胜,向上的点数为偶数则乙获胜
B. 同时抛掷两枚硬币,恰有一枚正面向上则甲获胜,两枚都正面向上则乙获胜
C. 从一副不含大小王的扑克牌中抽一张,扑克牌是红色的则甲获胜,扑克牌是黑色的则乙获胜
D. 甲、乙两人各写一个数字1或2,如果两人写的数字相同甲获胜,否则乙获胜
【答案】B
【解析】对于A:抛掷一枚骰子,向上的点数为奇数的概率为,向上的点数为偶数的概率为故A公平;
对于B中同时抛掷两枚硬币,恰有一枚正面向上的概率为,两枚都正面向上的概率为 所以对乙不公平
对于C:从一副不含大小王的扑克牌中抽一张,扑克牌是红色的概率为,扑克牌是黑色的概率为,所以公平;
对于D:甲、乙两人各写一个数字1或2,如果两人写的数字相同的概率为,数字不同的概率为,所以公平;
故选B
练习册系列答案
相关题目
【题目】上半年产品产量与单位成本资料如下:
月份 | 产量/千件 | 单位成本/元 |
1 | 2 | 73 |
2 | 3 | 72 |
3 | 4 | 71 |
4 | 3 | 73 |
5 | 4 | 69 |
6 | 5 | 68 |
且已知产量x与单位成本y具有线性相关关系.
(1)求出回归方程.
(2)指出产量每增加1 000件时,单位成本平均变动多少?
(3)假定产量为6 000件时,单位成本为多少元?
【题目】厂为了对新研发的一种产品进行合理定价,将该产品按事先拟定的价格进行试销,得到如下数据:
单价x/元 | 8 | 8.2 | 8.4 | 8.6 | 8.8 | 9 |
销量y/件 | 90 | 84 | 83 | 80 | 75 | 68 |
(1)求线性回归方程=x+,其中=-20, =- .
(2)预计在今后的销售中,销量与单价仍然服从(1)中的关系,且该产品的成本是4元/件,为使工厂获得最大利润,该产品的单价应定为多少元?(利润=销售收入-成本)