题目内容
【题目】某省高考改革实施方案指出:该省高考考生总成绩将由语文、数学、外语3门统一高考成绩和学生自主选择的学业水平等级性考试科目共同构成,该省教育厅为了解正在读高中的学生家长对高考改革方案所持的赞成态度,随机从中抽取了100名城乡家长作为样本进行调查,调查结果显示样本中有25人持不赞成意见,如图是根据样本的调查结果绘制的等高条形图.
(1)根据已知条件与等高条形图完成下面的列联表,并判断我们能否有95%的把握认为“赞成高考改革方案与城乡户口有关”?
注:,其中.
(2)用样本的频率估计概率,若随机在全省不赞成高考改革的家长中抽取3个,记这3个家长中是城镇户口的人数为,试求的分布列及数学期望.
【答案】(1)答案见解析;(2)答案见解析.
【解析】试题分析:(1)由等高条形图,完成列联表,由卡方公式求得,可得我们没有95%的把握认为“赞成高考改革方案与城乡户口有关”。(2)
用样本的频率估计概率,随机在全省不赞成高考改革的家长中抽中城镇户口家长的概率为0.6.抽中农村户口家长的概率为0.4,所以满足二项分布,由二项分布公式写出的分布列及数学期望。
试题解析:(1)完成列联表,如下:
代入公式,得观测值:
.
∴我们没有95%的把握认为“赞成高考改革方案与城乡户口有关”.
(2)用样本的频率估计概率,随机在全省不赞成高考改革的家长中抽中城镇户口家长的概率为0.6.
抽中农村户口家长的概率为0.4,
的可能取值为0,1,2,3.
,
,
,
.
∴的分布列为:
.
练习册系列答案
相关题目
【题目】某人射击一次命中7~10环的概率如下表
命中环数 | 7 | 8 | 9 | 10 |
命中概率 | 0.16 | 0.19 | 0.28 | 0.24 |
计算这名射手在一次 射击中:
(1)射中10环或9环的概率;
(2)至少射中7环的概率;
(3)射中环数不足8环的概率.