题目内容
【题目】在多面体中,底面是梯形,四边形是正方形,,,,,
(1)求证:平面平面;
(2)设为线段上一点,,求二面角的平面角的余弦值.
【答案】(1)见解析;(2).
【解析】分析:(1)由勾股定理的逆定理可得,;又由条件可得到,于是平面,可得,从而得到平面,根据面面垂直的判定定理得平面平面.(2)由题意得可得,,两两垂直,故可建立空间直角坐标系,结合题意可得点,于是可求得平面的法向量为,又是平面的一个法向量,求得后结合图形可得所求余弦值为.
详解:(1)由,,,得,
∴为直角三角形,且
同理为直角三角形,且.
又四边形是正方形,
∴.
又
∴.
在梯形中,过点作作于,
故四边形是正方形,
∴.
在中,,
∴,,
∴,
∴,
∴.
∵,,,
∴平面,
又平面,
∴,
又,
∴平面,
又平面,
∴平面平面.
(2)由(1)可得,,两两垂直,以为原点,,,所在直线为轴建立如图所示的空间直角坐标系,
则.
令,则,
∵,
∴
∴点.
∵平面,
∴是平面的一个法向量.
设平面的法向量为.
则,即,可得.
令,得.
∴.
由图形知二面角为锐角,
∴二面角的平面角的余弦值为.
【题目】某种仪器随着使用年限的增加,每年的维护费相应增加. 现对一批该仪器进行调查,得到这批仪器自购入使用之日起,前5年平均每台仪器每年的维护费用大致如下表:
年份(年) | 1 | 2 | 3 | 4 | 5 |
维护费(万元) | 0.7 | 1.2 | 1.6 | 2.1 | 2.4 |
(1)根据表中所给数据,试建立关于的线性回归方程;
(2)若该仪器的价格是每台12万元,你认为应该使用满五年换一次仪器,还是应该使用满八年换一次仪器?并说明理由.
参考公式:用最小二乘法求线性回归方程的系数公式:
,
【题目】某厂生产不同规格的一种产品,根据检测标准,其合格产品的质量与尺寸x(mm)之间近似满足关系式(b、c为大于0的常数).按照某项指标测定,当产品质量与尺寸的比在区间内时为优等品.现随机抽取6件合格产品,测得数据如下:
尺寸x(mm) | 38 | 48 | 58 | 68 | 78 | 88 |
质量y (g) | 16.8 | 18.8 | 20.7 | 22.4 | 24 | 25.5 |
质量与尺寸的比 | 0.442 | 0.392 | 0.357 | 0.329 | 0.308 | 0.290 |
(Ⅰ)现从抽取的6件合格产品中再任选3件,记为取到优等品的件数,试求随机变量的分布列和期望;
(Ⅱ)根据测得数据作了初步处理,得相关统计量的值如下表:
75.3 | 24.6 | 18.3 | 101.4 |
(ⅰ)根据所给统计量,求y关于x的回归方程;
(ⅱ)已知优等品的收益(单位:千元)与的关系为,则当优等品的尺寸x为何值时,收益的预报值最大?(精确到0.1)
附:对于样本 ,其回归直线的斜率和截距的最小二乘估计公式分别为:,,.
【题目】某糕点房推出一类新品蛋糕,该蛋糕的成本价为4元,售价为8元.受保质期的影响,当天没有销售完的部分只能销毁.经过长期的调研,统计了一下该新品的日需求量.现将近期一个月(30天)的需求量展示如下:
日需求量x(个) | 20 | 30 | 40 | 50 |
天数 | 5 | 10 | 10 | 5 |
(1)从这30天中任取两天,求两天的日需求量均为40个的概率.
(2)以上表中的频率作为概率,列出日需求量的分布列,并求该月的日需求量的期望.
(3)根据(2)中的分布列求得当该糕点房一天制作35个该类蛋糕时,对应的利润的期望值为;现有员工建议扩大生产一天45个,求利用利润的期望值判断此建议该不该被采纳.