题目内容
【题目】已知椭圆的对称轴为坐标轴,焦点在轴上,离心率为,且经过点.
(1)求椭圆的方程;
(2)设直线与椭圆相交于、两点,且,,若原点在以为直径的圆外,求的取值范围.
【答案】(1);(2)
【解析】
(1)由题意分别确定a,b的值,据此即可确定椭圆方程;
(2)联立直线方程与椭圆方程,直线与椭圆相交,则,原点在以为直径的圆外,则,据此结合韦达定理得到关于斜率的不等式,求解不等式即可确定的取值范围.
(1)依题意,可设椭圆的方程为.
∵离心率为,∴,即,∴,
∵椭圆经过点,∴.
解得,∴,,∴椭圆的方程为.
(2)记、两点坐标分别为,,
由消去,得,
∵直线与椭圆有两个交点,
∴,∴,
由韦达定理,,
∵原点在以为直径的圆外,∴为锐角,
∵,,
∴为锐角,∴,
∵
.
∴,∴.
∵,∴,
∴的取值范围为.
【题目】某公司甲、乙两个班组分别试生产同一种规格的产品,已知此种产品的质量指标检测分数不小于70时,该产品为合格品,否则为次品,现随机抽取两个班组生产的此种产品各100件进行检测,其结果如下表:
质量指标检测分数 | [50,60) | [60,70) | [70,80) | [80,90) | [90,100] |
甲班组生产的产品件数 | 7 | 18 | 40 | 29 | 6 |
乙班组生产的产品件数 | 8 | 12 | 40 | 32 | 8 |
(1)根据表中数据,估计甲、乙两个班组生产该种产品各自的不合格率;
(2)根据以上数据,完成下面的2×2列联表,并判断是否有95%的把握认为该种产品的质量与生产产品的班组有关?
甲班组 | 乙班组 | 合计 | |
合格品 | |||
次品 | |||
合计 |
(3)若按合格与不合格比例,从甲班组生产的产品中抽取4件产品,从乙班组生产的产品中抽取5件产品,记事件A:从上面4件甲班组生产的产品中随机抽取2件,且都是合格品;事件B:从上面5件乙班组生产的产品中随机抽取2件,一件是合格品,一件是次品,试估计这两个事件哪一种情况发生的可能性大.
附:
P(K2≥k) | 0.050 | 0.010 | 0.001 |
k | 3.841 | 6.635 | 10.828 |
【题目】为评估设备生产某种零件的性能,从该设备生产零件的流水线上随机抽取100件零件作为样本,测量其直径后,整理得到下表:
直径/ | 78 | 79 | 81 | 82 | 83 | 84 | 85 | 86 | 87 | 88 | 89 | 90 | 91 | 93 | 合计 |
件数 | 1 | 1 | 3 | 5 | 6 | 19 | 33 | 18 | 4 | 4 | 2 | 1 | 2 | 1 | 100 |
经计算,样本的平均值,标准差,以频率值作为概率的估计值.
(1)为评判一台设备的性能,从该设备加工的零件中任意抽取一件,记其直径为,并根据以下不等式进行评判(表示相应事件的频率):
①;②;③,评判规则为:若同时满足上述三个不等式,则设备等级为甲;仅满足其中两个,则等级为乙;若仅满足其中一个,则等级为丙;若全部不满足,则等级为丁.试判断设备的性能等级.
(2)将直径小于等于的零件或直径大于等于的零件认定为是“次品”,将直径小于等于的零件或直径大于等于的零件认定为是“突变品”,从样本的“次品”中随意抽取2件零件,求“突变品”个数的数学期望.
【题目】“开门大吉”是某电视台推出的游戏节目,选手面对1号8扇大门,依次按响门上的门铃,门铃会播放一段音乐(将一首经典流行歌曲以单音色旋律的方式演绎),选手需正确回答出这首歌的名字,方可获得该扇门对应的家庭梦想基金,在一次场外调查中,发现参赛选手多数分为两个年龄段: ; (单位:岁),其猜对歌曲名称与否的人数如图所示.
(Ⅰ)写出列联表;判断是否有的把握认为猜对歌曲名称是否与年龄有关;说明你的理由;(如表的临界值表供参考)
0.10 | 0.05 | 0.010 | 0.005 | |
2.706 | 3.841 | 6.635 | 7.879 |
(Ⅱ)现计划在这次场外调查中按年龄段用分层抽样的方法选取6名选手,并抽取3名幸运选手,求3名幸运选手中恰好有一人在岁之间的概率.
(参考公式: ,其中)