题目内容
【题目】在平面直角坐标系中,定义为两点,的“切比雪夫距离”,又设点及上任意一点,称的最小值为点到直线的“切比雪夫距离”,记作,给出下列三个命题:
①对任意三点、、,都有;
②已知点和直线:,则;
③到定点的距离和到的“切比雪夫距离”相等的点的轨迹是正方形.
其中正确的命题有( )
A.0个B.1个C.2个D.3个
【答案】C
【解析】
①讨论,,三点共线,以及不共线的情况,结合图象和新定义,即可判断;
②设点是直线上一点,且,可得,,讨论,的大小,可得距离,再由函数的性质,可得最小值;
③设定点,且相等距离为1,从而可判断出命题的真假.
① 对任意三点、、,若它们共线,设,、,,,,如图,结合三角形的相似可得,,为,,,或,,,则;
若,或,对调,可得;
若,,不共线,且三角形中为锐角或钝角,如图,
由矩形或矩形,
;
则对任意的三点,,,都有,故①正确;
②设点是直线上一点,且,
可得,,
由,解得,即有,
当时,取得最小值;
由,解得或,即有,
的范围是,无最值;
综上可得,,两点的“切比雪夫距离”的最小值为;故②正确;
③假设定点,到定点的距离和到的“切比雪夫距离”相等且距离为1的点为,则到定点的距离为1的点的轨迹为单位圆;到的“切比雪夫距离”的距离为1的点,所以,即或显然点的轨迹为正方形,所以只有四个点符合要求,故③错误;
故选:C
练习册系列答案
相关题目