题目内容
11.设等差数列{an}的前n项和为Sn,若S3=a5,S5=25,则公差d=2,a6+a8=26.分析 根据题意和等差数列的前n项和公式列出方程组,求出公差a和首项a1,利用等差数列的通项公式求出a6+a8的值.
解答 解:∵S3=a5,S5=25,
∴$\left\{\begin{array}{l}{3{a}_{1}+3d={a}_{1}+4d}\\{5{a}_{1}+10d=25}\end{array}\right.$,解得$\left\{\begin{array}{l}{{a}_{1}=1}\\{d=2}\end{array}\right.$,
∴a6+a8=2a1+12d=2+24=26,
故答案为:2;26.
点评 本题考查等差数列的前n项和公式,以及等差数列的通项公式,考查方程思想,属于基础题.
练习册系列答案
相关题目
1.辛集中学高二学生要用鲜花布置花圃中ABCDE五个不同区域,要求同一区域上用同一种颜色的鲜花,相邻区域使用不同颜色的鲜花.现有红、黄、蓝、白、紫五种不同颜色的鲜花可供任意选择.恰有两个区域用红色鲜花的概率( )
A. | $\frac{8}{35}$ | B. | $\frac{6}{35}$ | C. | $\frac{4}{35}$ | D. | $\frac{2}{35}$ |
6.已知函数 f(x)=$\left\{{\begin{array}{l}{{{(x-1)}^3}(x≥1)}\\{{{(1-x)}^3}({x<1})}\end{array}}$,若关于x的不等式f(x)<f(ax+1)的解集中有且仅有两个整数,则实数a的取值范围为( )
A. | $(-\frac{2}{3},1)$ | B. | $[{-\frac{2}{3},-\frac{1}{2}})∪({\frac{1}{2},\frac{2}{3}}]$ | C. | $({-\frac{2}{3},\frac{2}{3}})$ | D. | $({-\frac{2}{3},\frac{1}{3}})∪(\frac{1}{2},\frac{2}{3})$ |
1.在某大学举行的自主招生考试中,随机抽取了100名考生的成绩(单位:分),并把所得数据列成了如下所示的频数分布表:
(Ⅰ)求抽取样本的平均数$\overline{x}$(同一组中的数据用该组区间的中点值代表);
(Ⅱ)已知这次考试共有2000名考生参加,如果近似地认为这次成绩Z服从正态分布N(μ,σ2)(其中μ近似为样本平均数$\overline{x}$,σ2近似为样本方差s2=161),且规定82.7分是复试线,那么在这2000名考生中,能进入复试的有多少人?(附:$\sqrt{161}$≈12.7,若z~N(μ,σ2),则P(μ-σ<z<μ+σ)=0.6826,P(μ-2σ<z<μ+2σ)=0.9544.).
组别 | [40,50) | [50,60) | [60,70) | [70,80) | [80,90) | [90,100) |
频数 | 5 | 18 | 28 | 26 | 17 | 6 |
(Ⅱ)已知这次考试共有2000名考生参加,如果近似地认为这次成绩Z服从正态分布N(μ,σ2)(其中μ近似为样本平均数$\overline{x}$,σ2近似为样本方差s2=161),且规定82.7分是复试线,那么在这2000名考生中,能进入复试的有多少人?(附:$\sqrt{161}$≈12.7,若z~N(μ,σ2),则P(μ-σ<z<μ+σ)=0.6826,P(μ-2σ<z<μ+2σ)=0.9544.).