ÌâÄ¿ÄÚÈÝ
6£®ÒÑÖªn¡ÊN*£¬É躯Êýfn£¨x£©=1-x+$\frac{{x}^{2}}{2}$-$\frac{{x}^{3}}{3}$+¡+£¨-1£©n•$\frac{{x}^{n}}{n}$£¨x¡ÊR£©£®º¯Êý¦Õ£¨x£©=f3£¨x£©+ax2µÄͼÏóÔÚµãB£¨1£¬¦Õ£¨1£©£©´¦µÄÇÐÏßµÄбÂÊΪ1£®£¨1£©ÇóaµÄÖµ£®
£¨2£©ÇózµÄÈ¡Öµ·¶Î§£¬Ê¹²»µÈʽ¦Õ£¨x£©¡Üz¶ÔÓÚÈÎÒâx¡Ê[0£¬2]ºã³ÉÁ¢£»
£¨3£©Ö¤Ã÷£º´æÔÚÎÞÊý¸ön¡ÊN*£¬¶ÔÈÎÒâ¸ø¶¨µÄÁ½¸ö²»Í¬µÄx1£¬x2±ØÓÐfn£¨x1£©=fn£¨x2£©³ÉÁ¢£®
·ÖÎö £¨1£©ÇóµÃº¯ÊýµÄµ¼Êý£¬ÇóµÃÇÐÏßµÄбÂÊ£¬½â·½³Ì¿ÉµÃa=1£»
£¨2£©ÓÉÌâÒâ¿ÉµÃz¡Ý£¨1-x+$\frac{{x}^{2}}{2}$-$\frac{{x}^{3}}{3}$+x2£©max£¬ÇóµÃµ¼ÊýºÍµ¥µ÷Çø¼ä£¬¿ÉµÃ×îÖµ£¬¼´¿ÉµÃµ½ËùÇó·¶Î§£»
£¨3£©ÌÖÂÛnΪżÊýʱ£¬º¯Êýfn£¨x£©µÄµ¼ÊýºÍµ¥µ÷Çø¼ä£¬¼´¿ÉµÃÖ¤£®
½â´ð ½â£º£¨1£©º¯Êý¦Õ£¨x£©=f3£¨x£©+ax2=1-x+$\frac{{x}^{2}}{2}$-$\frac{{x}^{3}}{3}$+ax2£¬
µ¼ÊýΪ¦Õ¡ä£¨x£©=-1+x-x2+2ax£¬
ÔÚµãB£¨1£¬¦Õ£¨1£©£©´¦µÄÇÐÏßµÄбÂÊΪ-1+1-1+2a=1£¬
½âµÃa=1£»
£¨2£©²»µÈʽ¦Õ£¨x£©¡Üz¶ÔÓÚÈÎÒâx¡Ê[0£¬2]ºã³ÉÁ¢£¬¼´Îª£º
z¡Ý£¨1-x+$\frac{{x}^{2}}{2}$-$\frac{{x}^{3}}{3}$+x2£©max£¬
Óɦա䣨x£©=-1+3x-x2£¬¿ÉµÃ0£¼x£¼$\frac{3-\sqrt{5}}{2}$£¬¦Õ¡ä£¨x£©£¼0£¬¦Õ£¨x£©µÝ¼õ£¬
ÔÚ$\frac{3-\sqrt{5}}{2}$£¼x£¼2£¬¦Õ¡ä£¨x£©£¾0£¬¦Õ£¨x£©µÝÔö£®
¼´ÓÐx=$\frac{3-\sqrt{5}}{2}$£¬È¡µÃ×îСֵ£¬x=2ʱȡµÃ×î´óÖµ£¬ÇÒΪ$\frac{7}{3}$£®
ÔòÓÐz¡Ý$\frac{7}{3}$£»
£¨3£©Ö¤Ã÷£ºµ±nΪżÊýʱ£¬º¯Êýfn£¨x£©=1-x+$\frac{{x}^{2}}{2}$-$\frac{{x}^{3}}{3}$+¡+$\frac{{x}^{n}}{n}$£¨x¡ÊR£©£®
µ¼ÊýΪfn¡ä£¨x£©=-1+x-x2+x3-x4+¡+xn-1=£¨x-1£©£¨1+x2+x4+¡+xn-2£©£¬
¼´ÓÐx£¾1ʱ£¬fn¡ä£¨x£©£¾0£¬fn£¨x£©µÝÔö£»x£¼1ʱ£¬fn¡ä£¨x£©£¼0£¬fn£¨x£©µÝ¼õ£®
Ôò´æÔÚÎÞÊý¸ön¡ÊN*£¬ÇÒnΪżÊýʱ£¬
¶ÔÈÎÒâ¸ø¶¨µÄÁ½¸ö²»Í¬µÄx1£¬x2±ØÓÐfn£¨x1£©=fn£¨x2£©³ÉÁ¢£®
µãÆÀ ±¾Ì⿼²éµ¼ÊýµÄÔËÓãºÇóÇÐÏßµÄбÂʺ͵¥µ÷Çø¼ä¡¢¼«ÖµºÍ×îÖµ£¬¿¼²é²»µÈʽºã³ÉÁ¢ÎÊÌâºÍ´æÔÚÐÔÎÊÌâµÄ½â·¨£¬×¢ÒâÔËÓõ¼ÊýÇóµ¥µ÷Çø¼äºÍ×îÖµ£¬¿¼²éÔËËãÄÜÁ¦£¬ÊôÓÚÖеµÌ⣮
A£® | Ïò×óƽÒÆ$\frac{¦Ð}{6}$ | B£® | ÏòÓÒƽÒÆ$\frac{¦Ð}{3}$ | C£® | Ïò×óƽÒÆ$\frac{5¦Ð}{6}$ | D£® | ÏòÓÒƽÒÆ$\frac{2¦Ð}{3}$ |
A£® | $\frac{\sqrt{5}}{5}$ | B£® | $\frac{2\sqrt{5}}{5}$ | C£® | -$\frac{\sqrt{5}}{5}$ | D£® | -$\frac{2\sqrt{5}}{5}$ |
A£® | 0 | B£® | -1 | C£® | 3 | D£® | -3 |