题目内容
【题目】已知,,其中常数.
(1)当时,求函数的极值;
(2)若函数有两个零点,求实数的范围;
(3)设,在区间内是否存在区间,使函数在区间的值域也是?请给出结论,并说明理由.
【答案】(1)极小值0,没有极大值;(2);(3)不存在区间符合要求,理由见解析.
【解析】
(1)求出导函数,利用导数研究函数的单调性,求出极值;
(2)求出导函数,利用导数研究函数的单调性,极值,得到有两个零点的条件,求出的范围;
(3)先根据导数判断在单调递增,将在区间的值域也是,转化为有两个大于的不等实根解决问题.
函数的定义域为,
(1)当时,,,
而在上单调递增,又,
当时,,则在上单调递减;
当时,,则在上单调递增,所以有极小值,没有极大值.
(2)令, ,因为,所以
0 | |||
增 | 减 |
因为有两个零点,所以,所以
当时因为,,所以有两个零点.
(3),假设在区间内是存在区间,使函数在区间的值域也是,因为,当时
所以在上是增函数,所以,即
即方程有两个大于的不等实根.上述方程等价于
设,所以
所以在上是增函数,所以上至多一个实数根.
即上不可能有两个不等实数根,所以假设不成立,所以不存在区间符合要求.
【题目】某市为广泛开展垃圾分类的宣传教育和倡导工作,使市民树立垃圾分类的环保意识,学会垃圾分类的知识,特举办了“垃圾分类知识竞赛".据统计,在为期1个月的活动中,共有两万人次参与网络答题.市文明实践中心随机抽取100名参与该活动的市民,以他们单次答题得分作为样本进行分析,由此得到如图所示的频率分布直方图:
(1)求图中a的值及参与该活动的市民单次挑战得分的平均成绩(同一组中数据用该组区间中点值作代表);
(2)若垃圾分类答题挑战赛得分落在区间之外,则可获得一等奖奖励,其中,s分别为样本平均数和样本标准差,计算可得,若某人的答题得分为96分,试判断此人是否获得一等奖;
(3)为扩大本次“垃圾分类知识竞赛”活动的影响力,市文明实践中心再次组织市民组队参场有奖知识竞赛,竞赛共分五轮进行,已知“光速队”与“超能队”五轮的成绩如下表:
成绩 | 第一轮 | 第二轮 | 第三轮 | 第四轮 | 第五轮 |
“光速队” | 93 | 98 | 94 | 95 | 90 |
“超能队” | 93 | 96 | 97 | 94 | 90 |
①分别求“光速队”与“超能队”五轮成绩的平均数和方差;
②以上述数据为依据,你认为"光速队”与“超能队”的现场有奖知识竞赛成绩谁更稳定?
【题目】已知x与y之间的几组数据如表:
x | 1 | 2 | 3 | 4 |
y | 1 | m | n | 4 |
如表数据中y的平均值为2.5,若某同学对m赋了三个值分别为1.5,2,2.5,得到三条线性回归直线方程分别为,,,对应的相关系数分别为,,,下列结论中错误的是( )
参考公式:线性回归方程中,其中,.相关系数.
A.三条回归直线有共同交点B.相关系数中,最大
C.D.