题目内容

【题目】已知圆C的圆心在x轴上,点 在圆C上,圆心到直线2x﹣y=0的距离为 ,则圆C的方程为(
A.(x﹣2)2+y2=3
B.(x+2)2+y2=9
C.(x±2)2+y2=3
D.(x±2)2+y2=9

【答案】D
【解析】解:设圆C的圆心(a,0)在x轴正半轴上,则圆的方程为(x﹣a)2+y2=r2(a>0), 由点M(0, )在圆上,且圆心到直线2x﹣y=0的距离为
,解得a=2,r=3.
∴圆C的方程为:(x﹣2)2+y2=9.
同理设圆C的圆心(a,0)在x轴负半轴上,则圆的方程为(x+a)2+y2=r2(a<0),
∴圆C的方程为:(x+2)2+y2=9.
综上,圆C的方程为:(x±2)2+y2=9.
故选:D.
由题意设出圆的方程,把点M的坐标代入圆的方程,结合圆心到直线的距离列式求解.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网