题目内容

【题目】如图,直三棱柱(侧棱与底面垂直的棱柱)ABC﹣A1B1C1中,点G是AC的中点.

(1)求证:B1C∥平面 A1BG;

(2)若AB=BC, ,求证:AC1⊥A1B.

【答案】(1)见解析;(2)见解析.

【解析】试题分析:(1)连结,交于点,连结,由三角形中位线定理得,由此能证明平面;(2)由线面垂直得,由已知推导出,从而得到,由此能证明.

试题解析:(1)证明:连结AB1,交A1B于点O,连结OG,在△B1AC中,∵G、O分别为AC、AB1中点,∴OG∥B1C,又∵OG平面A1BG,B1C平面A1BG,∴B1C∥平面 A1BG.

(2)证明:∵直三棱柱ABC﹣A1B1C1中,AA1⊥底面ABC,BG平面ABC,∴AA1⊥BG,∵G为棱AC的中点,AB=BC,∴BG⊥AC,∵AA1∩AC=A,∴BG⊥平面ACC1A1,∴BG⊥AC1,∵G为棱AC中点,设AC=2,则AG=1,∵,∴在Rt△ACC1和Rt△A1AG中,,∴∠AC1C=∠A1GA=∠A1GA+∠C1AC=90°,∴A1G⊥AC1,∵,∴AC1⊥平面A1BG,∵A1B平面A1BG,∴AC1⊥A1B.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网