题目内容
14.求由y=x2,y=2x,y=x围成图形的面积$\frac{7}{6}$.分析 利用定积分求曲边图形的面积解决该问题.关键要弄清楚积分的区间与被积函数,然后通过微积分基本定理求出所求的面积.
解答 解:由$\left\{\begin{array}{l}{y={x}^{2}}\\{y=x}\end{array}\right.$,得A(1,1),又由$\left\{\begin{array}{l}{y={x}^{2}}\\{y=2x}\end{array}\right.$,得B(2,4)
所求平面图形面积为:S=${∫}_{0}^{1}(2x-x)dx+{∫}_{1}^{2}(2x-{x}^{2})dx$=$(\frac{1}{2}{x}^{2}){|}_{0}^{1}+({x}^{2}-\frac{1}{3}{x}^{3}){|}_{1}^{2}$=$\frac{7}{6}$.
故答案为:$\frac{7}{6}$.
点评 本题考查定积分在求曲边图形面积中的应用,考查积分与导数之间的关系,求解时要确定出被积函数的原函数.考查学生的运算能力.
练习册系列答案
相关题目
4.f(x)是偶函数且在[0,+∞)上是减函数,且f(log2x)>f(1),则x的取值范围是( )
A. | ($\frac{1}{2}$,1) | B. | (0,$\frac{1}{2}$)∪(1,+∞) | C. | ($\frac{1}{2}$,2) | D. | (0,1)∪(2,+∞) |
5.已知i是虚数单位,则复数($\frac{1+i}{1-i}$)5的值为( )
A. | i | B. | -i | C. | 1 | D. | -1 |