题目内容
【题目】已知矩形纸片中,,将矩形纸片的右下角沿线段折叠,使矩形的顶点B落在矩形的边上,记该点为E,且折痕的两端点M,N分别在边上.设,的面积为S.
(1)将l表示成θ的函数,并确定θ的取值范围;
(2)求l的最小值及此时的值;
(3)问当θ为何值时,的面积S取得最小值?并求出这个最小值.
【答案】(1)(2),的最小值为.(3)时,面积取最小值为
【解析】
(1),利用三角函数定义分别表示,且,即可得到关于的解析式;,,则,即可得到的范围;
(2)由(1),若求l的最小值即求的最大值,即可求的最大值,设为,令,则,即可设,利用导函数判断函数的单调性,即可求得的最大值,进而求解;
(3)由题,,则,设,,利用导函数求得的最大值,即可求得的最小值.
解:(1),
故.
因为,所以,,
所以,
又,,则,所以,
所以
(2)记,
则,
设,,则,
记,则,
令,则,
当时,;当时,,
所以在上单调递增,在上单调递减,
故当时取最小值,此时,的最小值为.
(3)的面积,
所以,设,则,
设,则,令,,
所以当时,;当时,,
所以在上单调递增,在上单调递减,
故当,即时,面积取最小值为
练习册系列答案
相关题目