题目内容
【题目】已知椭圆的左、右焦点分别为,长轴长为4,且过点.
(1)求椭圆C的方程;
(2)过的直线l交椭圆C于两点,过A作x轴的垂线交椭圆C与另一点Q(Q不与重合).设的外心为G,求证为定值.
【答案】(1)(2)证明见解析
【解析】
(1)根据长轴及椭圆过点即可求出;
(2)由题意设直线为,联立椭圆方程可求,求出外接圆圆心,计算,化简即可证明为定值.
(1)由题意知,
将P点坐标代入椭圆方程得,解得,
所以椭圆方程为.
(2)由题意知,直线的斜率存在,且不为0,设直线为,
代入椭圆方程得.
设,则,
所以的中点坐标为,
所以.
因为G是的外心,所以G是线段的垂直平分线与线段的垂直平分线的交点,
的垂直平分线方程为,
令,得,即,所以,
所以,所以为定值,定值为4.
【题目】随着改革开放的不断深入,祖国不断富强,人民的生活水平逐步提高,为了进一步改善民生,2019年1月1日起我国实施了个人所得税的新政策,其政策的主要内容包括:(1)个税起征点为5000元;(2)每月应纳税所得额(含税)收入个税起征点专项附加扣除;(3)专项附加扣除包括①赡养老人费用②子女教育费用③继续教育费用④大病医疗费用等.其中前两项的扣除标准为:①赡养老人费用:每月扣除2000元②子女教育费用:每个子女每月扣除1000元.新个税政策的税率表部分内容如下:
级数 | 一级 | 二级 | 三级 | 四级 | |
每月应纳税所得额(含税) | 不超过3000元的部分 | 超过3000元至12000元的部分 | 超过12000元至25000元的部分 | 超过25000元至35000元的部分 | |
税率 | 3 | 10 | 20 | 25 |
(1)现有李某月收入29600元,膝下有一名子女,需要赡养老人,除此之外,无其它专项附加扣除.请问李某月应缴纳的个税金额为多少?
(2)为研究月薪为20000元的群体的纳税情况,现收集了某城市500名的公司白领的相关资料,通过整理资料可知,有一个孩子的有400人,没有孩子的有100人,有一个孩子的人中有300人需要赡养老人,没有孩子的人中有50人需要赡养老人,并且他们均不符合其它专项附加扣除(受统计的500人中,任何两人均不在一个家庭).若他们的月收入均为20000元,依据样本估计总体的思想,试估计在新个税政策下这类人群缴纳个税金额的分布列与期望.