题目内容

如图,P是双曲线
x2
a2
-
y2
b2
=1(a>0,b>0,xy≠0)
上的动点,F1、F2是双曲线的焦点,M是∠F1PF2的平分线上一点,且
F2M
MP
=0
.某同学用以下方法研究|OM|:延长F2M交PF1于点N,可知△PNF2为等腰三角形,且M为F2M的中点,得|OM|=
1
2
|NF1|=…=a
.类似地:P是椭圆
x2
a2
+
y2
b2
=1(a>b>0,xy≠0)
上的动点,F1、F2是椭圆的焦点,M是∠F1PF2的平分线上一点,且
F2M
MP
=0
.则|OM|的取值范围是 ______.
延长F2M交PF1于点N,可知△PNF2为等腰三角形,
且M为F2M的中点,
|OM|=
1
2
|NF1|
=a-|F2M|
∵a-c<|F2M|<a
故0<|OM|<c=
a2-b2

故|OM|的取值范围是(0,
a2-b2
)

故答案为:(0,
a2-b2
)
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网