题目内容
【题目】在平面直角坐标系中,以坐标原点O为极点,x轴的非负半轴为极轴建立极坐标系,直线l的极坐标方程为,曲线C的参数方程为(为参数,).
(1)求直线l的直角坐标方程及曲线C的普通方程;
(2)证明:直线l和曲线C相交,并求相交弦的长度.
【答案】(1),(2)
【解析】
(1)按照两角差的正弦公式和极坐标化为直角坐标的公式得到结果;(2)根据第一问得到的圆的普通方程可求得圆的圆心和坐标,再由垂径定理构造直角三角形,得到弦长.
(1) 因为直线的极坐标方程为:
所以,即为
因为,所以直线的直角坐标方程为
即为
由曲线的参数方程 得,两式平方做和
得到
所以曲线的普通方程为
(2) 由(1)得,圆 的圆心为,半径
因为圆心到直线的距离
所以直线与圆相交
设交点为,则
所以,相交弦的长度为.
练习册系列答案
相关题目
【题目】一般来说,一个人脚掌越长,他的身高就越高.现对10名成年人的脚掌长与身高进行测量,得到数据(单位均为)作为样本如下表所示.
脚掌长(x) | 20 | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 29 |
身高(y) | 141 | 146 | 154 | 160 | 169 | 176 | 181 | 188 | 197 | 203 |
(1)在上表数据中,以“脚掌长”为横坐标,“身高”为纵坐标,作出散点图后,发现散点在一条直线附近,试求“身高”与“脚掌长”之间的线性回归方程;
(2)若某人的脚掌长为,试估计此人的身高;
(3)在样本中,从身高180cm以上的4人中随机抽取2人作进一步的分析,求所抽取的2人中至少有1人身高在190cm以上的概率.
(参考数据:,,,)