题目内容
【题目】如图,在直三棱柱中,,为棱的中点,.
(1)证明:平面;
(2)设二面角的正切值为,,,求异面直线与所成角的余弦值.
【答案】(1)见解析(2)
【解析】试题分析:(1)取的中点,根据平行四边形性质得,再根据线面平行判定定理得结论,(2)根据条件建立空间直角坐标系,设立各点坐标,根据向量数量积求向量夹角,最后根据线线角与向量夹角相等或互余关系确定结果.
试题解析:(1)证明:取的中点,连接,,
∵侧面为平行四边形,∴为的中点,
∴,又,∴,
∴四边形为平行四边形,则.
∵平面,平面,∴平面.
(2)解:过作于,连接,
则即为二面角的平面角.
∵,,∴.
以为原点,建立空间直角坐标系,如图所示,则,,,,
则,,.
∵,∴,
∴异面直线与所成角的余弦值为.
【题目】某大学为了调查该校学生性别与身高的关系,对该校1000名学生按照的比例进行抽样调查,得到身高频数分布表如下:
男生身高频率分布表
男生身高 (单位:厘米) | ||||||
频数 | 7 | 10 | 19 | 18 | 4 | 2 |
女生身高频数分布表
女生身高 (单位:厘米) | ||||||
频数 | 3 | 10 | 15 | 6 | 3 | 3 |
(1)估计这1000名学生中女生的人数;
(2)估计这1000名学生中身高在的概率;
(3)在样本中,从身高在的女生中任取3名女生进行调查,设表示所选3名学生中身高在的人数,求的分布列和数学期望.(身高单位:厘米)
【题目】有一名高二学生盼望2020年进入某名牌大学学习,假设该名牌大学有以下条件之一均可录取:①2020年2月通过考试进入国家数学奥赛集训队(集训队从2019年10月省数学竞赛一等奖中选拔):②2020年3月自主招生考试通过并且达到2020年6月高考重点分数线,③2020年6月高考达到该校录取分数线(该校录取分数线高于重点线),该学生具备参加省数学竞赛、自主招生和高考的资格且估计自己通过各种考试的概率如下表
省数学竞赛一等奖 | 自主招生通过 | 高考达重点线 | 高考达该校分数线 |
0.5 | 0.6 | 0.9 | 0.7 |
若该学生数学竞赛获省一等奖,则该学生估计进入国家集训队的概率是0.2.若进入国家集训队,则提前录取,若未被录取,则再按②、③顺序依次录取:前面已经被录取后,不得参加后面的考试或录取.(注:自主招生考试通过且高考达重点线才能录取)
(Ⅰ)求该学生参加自主招生考试的概率;
(Ⅱ)求该学生参加考试的次数的分布列及数学期望;
(Ⅲ)求该学生被该校录取的概率.
【题目】为了了解市民对开设传统文化课的态度,教育机构随机抽取了位市民进行了解,发现支持开展的占,在抽取的男性市民人中持支持态度的为人.
(1)完成列联表,并判断是否有的把握认为性别与支持与否有关?
支持 | 不支持 | 合计 | |
男性 | |||
女性 | |||
合计 |
(2)为了进一步征求对开展传统文化的意见和建议,从抽取的位市民中对不支持的按照分层抽样的方法抽取位市民,并从抽取的人中再随机选取人进行座谈,求选取的人恰好为男女的概率.
附: