题目内容
证明函数=在区间上是减函数. (14分)
证明:任取,则所以函数在区间上是减函数。
解析
(本小题满分12分)定义在非零实数集上的函数满足关系式且在区间上是增函数(1) 判断函数的奇偶性并证明你的结论;(2) 解不等式
已知函数,且定义域为(0,2).(1)求关于x的方程+3在(0,2)上的解;(2)若是定义域(0,2)上的单调函数,求实数的取值范围;(3)若关于x的方程在(0,2)上有两个不同的解,求k的取值范围。
已知f(x)=x2-2x+1,g(x)是一次函数,且f[g(x)]=4x2,求g(x)的解析式.
(本题满分12分)已知函数f(x)=(1)若函数定义域为[3,4],求函数值域(2)若函数定义域为[-3,4],求函数值域
已知定义域为R的函数f(x)满足f(f(x)-x2+x)=f(x)-x2+x.(Ⅰ)若f(2)=3,求f(1);又若f(0)=a,求f(a);(Ⅱ)设有且仅有一个实数x0,使得f(x0)= x0,求函数f(x)的解析表达式.
(本题满分10分)已知定义在上的函数的图象如右图所示(Ⅰ)写出函数的周期;(Ⅱ) 确定函数的解析式.
函数f(x)=2x和g(x)=x3的图象的示意图如右图所示,设两函数的图象交于点A(x1,y1),B(x2,y2),且x1<x2.(1)请指出示意图中曲线C1,C2分别对应哪一个函数?(2)若x1∈,x2∈,且a,b∈{1,2,3,4,5,6,7,8,9,10,11,12}指出a,b的值,并说明理由;(3)结合函数图象示意图,判断f(6),g(6),f(2010),g(2010)的大小.
(本小题满分12分)已知函数,且。(1)求的值;(2)判定的奇偶性;(3)判断在上的单调性,并给予证明。