题目内容
【题目】已知关于不等式,其中.
(1)试求不等式的解集;
(2)对于不等式的解集,若满足(其中为整数集).试探究集合能否为有限集?若能,求出使得集合中元素个数最少时的取值范围,并用列举法表示集合;若不能,请说明理由.
【答案】(1)时,,时,,或时,,时,.
(2),.
【解析】
(1)对分类讨论,利用解一元二次不等式的解法可得;
(2)根据(其中为整数集).集合为有限集,可得,求出最大值可得集合元素个数最少时的集合.
(1)时,不等式为.,∴,
(2)时,由于,所以,,
(3)时,
由得或,不等式的解为或,
,
当时,,不等式的解为或,
.
综上,时,,时,,或时,,时,.
(2)∵(其中为整数集).集合能为有限集,
则,,由对勾函数,知函数在上递增,在上递减,∴时,的最大值为,
因此中元素最少时,.
【题目】近期,某超市针对一款饮料推出刷脸支付活动,活动设置了一段时间的推广期,由于推广期内优惠力度较大,吸引越来越多的人开始使用刷脸支付.该超市统计了活动刚推出一周内每一天使用刷脸支付的人次,用表示活动推出的天数,表示每天使用刷脸支付的人次,统计数据如下表所示:
(1)在推广期内,与(均为大于零的常数)哪一个适宜作为刷脸支付的人次关于活动推出天数的回归方程类型?(给出判断即可,不必说明理由);
(2)根据(1)的判断结果及表中的数据,求关于的回归方程,并预测活动推出第天使用刷脸支付的人次;
(3)已知一瓶该饮料的售价为元,顾客的支付方式有三种:现金支付、扫码支付和刷脸支付,其中有使用现金支付,使用现金支付的顾客无优惠;有使用扫码支付,使用扫码支付享受折优惠;有使用刷脸支付,根据统计结果得知,使用刷脸支付的顾客,享受折优惠的概率为,享受折优惠的概率为,享受折优惠的概率为.根据所给数据估计购买一瓶该饮料的平均花费.
参考数据:其中,
参考公式:对于一组数据,其回归直线的斜率和截距的最小二乘估计公式分别为:.
【题目】某中学对高三年级的学生进行体质测试,已知高三、一班共有学生30人,测试立定跳远的成绩用茎叶图表示如下(单位:):
|
|
| 男 |
| 女 |
|
|
|
|
|
7 | 16 | 5 | 7 | 8 | 9 | 9 | ||||
9 | 8 | 17 | 1 | 8 | 4 | 5 | 2 | 9 | ||
3 | 5 | 6 | 18 | 0 | 2 | 7 | 5 | 4 | ||
1 | 2 | 4 | 19 | 0 | 1 | |||||
1 8 5 | 20 21 22 |
男生成绩不低于的定义为“合格”,成绩低于的定义为“不合格”;女生成绩不低于的定义为“合格”,成绩低于的定义为“不合格”.
(1) 求女生立定跳远成绩的中位数;
(2) 若在男生中按成绩是否合格进行分层抽样,抽取6个人,求抽取成绩“合格”的男生人数;
(3) 若从(2)问所抽取的6人中任选2人,求这2人中恰有1人成绩“合格”的概率.
【题目】某家庭记录了未使用节水龙头50天的日用水量数据(单位:m3)和使用了节水龙头50天的日用水量数据,得到频数分布表如下:
未使用节水龙头50天的日用水量频数分布表
日用 水量 | |||||||
频数 | 1 | 3 | 2 | 4 | 9 | 26 | 5 |
使用了节水龙头50天的日用水量频数分布表
日用 水量 | ||||||
频数 | 1 | 5 | 13 | 10 | 16 | 5 |
(1)在答题卡上作出使用了节水龙头50天的日用水量数据的频率分布直方图:
(2)估计该家庭使用节水龙头后,日用水量小于0.35 m3的概率;
(3)估计该家庭使用节水龙头后,一年能节省多少水?(一年按365天计算,同一组中的数据以这组数据所在区间中点的值作代表.)