题目内容
【题目】已知点为圆的圆心, 是圆上动点,点在圆的半径上,且有点和上的点,满足
(1)当在圆上运动时,求点的轨迹方程;
(2)若斜率为的直线与圆相切,与(1)中所求点的轨迹教育不同的两点 是坐标原点,且时,求的取值范围.
【答案】(1)(2)或
【解析】试题分析:(1)中线段的垂直平分线,所以,所以点的轨迹是以点为焦点,焦距为2,长轴为的椭圆,从而可得椭圆方程;(2)设直线,直线与圆相切,可得直线方程与椭圆方程联立可得: ,可得,再利用数量积运算性质、根与系数的关系及其即可解出的范围.
试题解析:(1)由题意知中线段的垂直平分线,所以
所以点的轨迹是以点为焦点,焦距为2,长轴为的椭圆,
故点的轨迹方程式
(2)设直线
直线与圆相切
联立
所以或为所求.
【题目】近年来,某市实验中学校领导审时度势,深化教育教学改革,经过师生共同努力,高考成绩硕果累累,捷报频传,尤其是2017年某著名高校在全国范围内录取的大学生中就有25名来自该中学.下表为该中学近5年被录取到该著名高校的学生人数.(记2013年的年份序号为1,2014年的年份序号为2,依此类推……)
年份序号 | 1 | 2 | 3 | 4 | 5 |
录取人数 | 10 | 13 | 17 | 20 | 25 |
(1)求关于的线性回归方程,并估计2018年该中学被该著名高校录取的学生人数(精确到整数);
(2)若在第1年和第4年录取的大学生中按分层抽样法抽取6人,再从这6人中任选2人,求这2人中恰好有一位来自第1年的概率.
参考数据:,.
参考公式:,.
【题目】某花店每天以每枝5元的价格从农场购进若干枝玫瑰花,然后以每枝10元的价格出售.如果当天卖不完,剩下的玫瑰花作垃圾处理.
(1)若花店一天购进17枝玫瑰花,求当天的利润y(单位:元)关于当天需求量n(单位:枝,n∈N)的函数解析式;
(2)花店记录了100天玫瑰花的日需求量(单位:枝),整理得下表:
日需求量n | 14 | 15 | 16 | 17 | 18 | 19 | 20 |
频数 | 10 | 20 | 16 | 16 | 15 | 13 | 10 |
①假设花店在这100天内每天购进17枝玫瑰花,求这100天的日利润(单位:元)的平均数;
②若花店一天购进17枝玫瑰花,以100天记录的各需求量的频率作为各需求量发生的概率,求当天的利润不少于75元的概率.