题目内容
【题目】已知,命题方程表示焦点在轴上的椭圆,命题方程表示双曲线.
(1)若命题是真命题,求实数的范围;
(2)若命题“或”为真命题,“且”是假命题,求实数的范围.
【答案】(1); (2).
【解析】
由方程表示焦点在y轴上的椭圆,根据椭圆的几何性质可得,,求解不等式可得答案;由双曲线的几何性质求出为真命题的的范围,结合,由为真命题,为假命题,可得一真一假,分两种情况讨论,对于真假以及假真分别列不等式组,分别解不等式组,然后求并集即可求得实数的取值范围.
若命题p是真命题,则,解得;
若命题q为真命题,则,即.
命题“p或q”为真命题,“p且q”为假命题,则p,q一真一假.
当p真q假时,,得;
当p假q真时,,解得或.
实数m的取值范围时.
练习册系列答案
相关题目