题目内容
【题目】在某电视娱乐节目的游戏活动中,每人需完成A、B、C三个项目.已知选手甲完成A、B、C三个项目的概率分别为、、.每个项目之间相互独立.
(1)选手甲对A、B、C三个项目各做一次,求甲至少完成一个项目的概率.
(2)该活动要求项目A、B 各做两次,项目C做三次.若两次项目A均完成,则进行项目B,并获得积分a;两次项目B均完成,则进行项目C,并获积分3a;三次项目C只要两次成功,则该选手闯关成功并获积分6a(积分不累计),且每个项目之间互相独立.用X表示选手甲所获积分的数值,写出X的分布列并求数学期望.
【答案】(1);(2)见解析
【解析】
(1)设选手甲对A、B、C三个项目记为事件A、B、C,且相互独立,至少完成一个项目为事件D.
则.
(2)X的取值分别0、a、3a、6a.则
,
,
,
.
于是,X的分布列如表1.
表1
X | 0 | a | 3a | 6a |
P |
故.
练习册系列答案
相关题目
【题目】某位同学进行寒假社会实践活动,为了对白天平均气温与某奶茶店的某种饮料销量之间的关系进行分析研究,他分别记录了1月11日至1月15日的白天平均气温与该小卖部的这种饮料销量(杯),得到如下数据:
日期 | 1月11日 | 1月12日 | 1月13日 | 1月14日 | 1月15日 |
平均气温 | 9 | 10 | 12 | 11 | 8 |
销量(杯) | 23 | 25 | 30 | 26 | 21 |
(1)若先从这五组数据中抽出2组,求抽出的2组数据恰好是相邻2天数据的概率;
(2)请根据所给五组数据,求出关于的线性回归方程;
(3)根据(1)中所得的线性回归方程,若天气预报1月16日的白天平均气温,请预测该奶茶店这种饮料的销量.
(参考公式:,)