题目内容
【题目】如图,在平面直角坐标系xOy中,点A(0,3),直线l:y=2x﹣4.设圆C的半径为1,圆心在l上.
(1)若圆心C也在直线y=x﹣1上,过点A作圆C的切线,求切线的方程;
(2)若圆C上存在点M,使MA=2MO,求圆心C的横坐标a的取值范围.
【答案】
(1)解:联立得: ,
解得: ,
∴圆心C(3,2).
若k不存在,不合题意;
若k存在,设切线为:y=kx+3,可得圆心到切线的距离d=r,即 =1,
解得:k=0或k=﹣ ,
则所求切线为y=3或y=﹣ x+3
(2)解:设点M(x,y),由MA=2MO,知: =2 ,
化简得:x2+(y+1)2=4,
∴点M的轨迹为以(0,﹣1)为圆心,2为半径的圆,可记为圆D,
又∵点M在圆C上,C(a,2a﹣4),
∴圆C与圆D的关系为相交或相切,
∴1≤|CD|≤3,其中|CD|= ,
∴1≤ ≤3,
解得:0≤a≤
【解析】(1)联立直线l与直线y=x﹣1解析式,求出方程组的解得到圆心C坐标,根据A坐标设出切线的方程,由圆心到切线的距离等于圆的半径,列出关于k的方程,求出方程的解得到k的值,确定出切线方程即可;(2)设M(x,y),由MA=2MO,利用两点间的距离公式列出关系式,整理后得到点M轨迹为以(0,﹣1)为圆心,2为半径的圆,可记为圆D,由M在圆C上,得到圆C与圆D相交或相切,根据两圆的半径长,得出两圆心间的距离范围,利用两点间的距离公式列出不等式,求出不等式的解集,即可得到a的范围.
【题目】对甲、乙两名篮球运动员分别在100场比赛中的得分情况进行统计,做出甲的得分频率分布直方图如图所示,列出乙的得分统计表如表所示:
分值 | [0,10) | [10,20) | [20,30) | [30,40) |
场数 | 10 | 20 | 40 | 30 |
(1)估计甲在一场比赛中得分大于等于20分的概率.
(2)判断甲、乙两名运动员哪个成绩更稳定.(结论不要求证明)
(3)试利用甲的频率分布直方图估计甲每场比赛的平均得分.
【题目】某种产品的质量以其质量指标值衡量,质量指标值越大表明质量越好,且质量指标值大于或等于102的产品为优质品.现用两种新配方(分别称为A配方和B配方)做试验,各生产了100件这种产品,并测量了每件产品的质量指标值,得到下面试验结果:
A配方的频数分布表
指标值分组 | [90,94) | [94,98) | [98,102) | [102,106) | [106,110] |
频数 | 8 | 20 | 42 | 22 | 8 |
B配方的频数分布表
指标值分组 | [90,94) | [94,98) | [98,102) | [102,106) | [106,110] |
频数 | 4 | 12 | 42 | 32 | 10 |
(1)分别估计用A配方,B配方生产的产品的优质品率;
(2)已知用B配方生产的一件产品的利润y(单位:元)与其质量指标值t的关系式为y=
估计用B配方生产的一件产品的利润大于0的概率,并求用B配方生产的上述100件产品平均一件的利润.