题目内容

【题目】已知函数f(x)=2cos2(x﹣ )﹣ sin2x+1
(Ⅰ)求f(x)的单调递增区间;
(Ⅱ)当x∈( )时,若f(x)≥log2t恒成立,求 t的取值范围.

【答案】解:(Ⅰ)∵f(x)=cos(2x﹣ )﹣ sin2x+2= cos2x﹣ sin2x+2=cos(2x+ )+2, 由2kπ﹣π≤2x+ ≤2kπ,k∈Z,得k ≤x≤k ,k∈Z,
∴f(x)的单调递增区间为[k ,k ],k∈Z,.
(或者:f(x)= +2= cos2x﹣ +2
=﹣ +2,
+2kπ≤ +2kπ,k∈Z.
+kπ≤x≤ +kπ,k∈Z.…(5分)
∴f(x)的单调递增区间为:[ +kπ, +kπ],k∈Z.
(Ⅱ)∵

∴﹣1≤cos( )≤﹣ ,1≤cos(2x+ )+2
(或者:∵ ,∴
≤1∴1≤﹣ +2≤
∴f(x) ,f(x)min=1.
若f(x)≥log2t恒成立,∴则log2t≤1,
∴0<t≤2,
即t的取值范围为(0,2]
【解析】(Ⅰ)由三角函数中的恒等变换应用化简函数解析式可得f(x)=cos(2x+ )+2,由2kπ﹣π≤2x+ ≤2kπ,k∈Z,即可解得f(x)的单调递增区间.(Ⅱ)由 ,可得 ,解得1≤cos(2x+ )+2 ,求得f(x) ,f(x)min=1,由题意log2t≤1,从而解得t的取值范围.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网