题目内容

【题目】如图,三棱柱ABC﹣A1B1C1中,侧棱AA1⊥平面ABC,△ABC为等腰直角三角形,∠BAC=90°,且AB=AA1=1,E,F分别是CC1 , BC的中点.
(Ⅰ)求证:B1F⊥平面AEF;
(Ⅱ)求三棱锥E﹣AB1F的体积.

【答案】证明:(Ⅰ)由条件知AF⊥平面CCBB1 , ∴AF⊥B1F, 由∠BAC=90°,且AB=AA1=1,得 ,EF=
,即B1F⊥EF,又∵EF∩AF=F,
∴B1F⊥平面AEF;
(Ⅱ)解:由已知可得,AF= ,且由(Ⅰ)知AF⊥FE,



【解析】(Ⅰ)证明AF⊥B1F,B1F⊥EF,然后证明B1F⊥平面AEF;(Ⅱ)由(Ⅰ)知,B1F⊥平面AEF,然后利用等积法求得三棱锥E﹣AB1F的体积.
【考点精析】关于本题考查的直线与平面垂直的判定,需要了解一条直线与一个平面内的两条相交直线都垂直,则该直线与此平面垂直;注意点:a)定理中的“两条相交直线”这一条件不可忽视;b)定理体现了“直线与平面垂直”与“直线与直线垂直”互相转化的数学思想才能得出正确答案.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网