题目内容

5.设函数f(x)=x2,x∈[-1,1],可以用随机模拟方法近似计算由曲线y=f(x)及直线x=-1、x=1、y=0所围成的封闭图形的面积S.先产生两组(每组n个)各自区间内的均匀随机数x1、x2、…、xn和y1、y2、…、yn,由此得到n个点(xi,yi)(i=1,2,…,n),再数出其中满足yi≤f(xi)(i=1,2,…,n)的点数m,那么由随机模拟方法可得S的近似值为$\frac{2m}{n}$.

分析 由题意知本题是求∫01f(x)dx,而它的几何意义是函数f(x)(其中0≤f(x)≤1)的图象与x轴、直线x=0和直线x=1所围成图形的面积,积分得到结果.

解答 解:∵∫01f(x)dx的几何意义是函数f(x)(其中0≤f(x)≤1)的图象与x轴、直线x=0和直线x=1所围成图形的面积,
∴根据几何概型易知∫01f(x)dx≈$\frac{2m}{n}$.
故答案为:$\frac{2m}{n}$.

点评 古典概型和几何概型是我们学习的两大概型,古典概型要求能够列举出所有事件和发生事件的个数,而不能列举的就是几何概型,几何概型的概率的值是通过长度、面积和体积的比值得到.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网