题目内容

【题目】设函数f(x)是定义在R上的奇函数,且f(x)= ,则g[f(﹣7)]=(
A.3
B.﹣3
C.2
D.﹣2

【答案】D
【解析】解:函数f(x)是定义在R上的奇函数,且f(x)=
设x<0,则﹣x>0,则f(﹣x)=log2(﹣x+1),
∵f(﹣x)=﹣f(x),
∴f(x)=﹣f(﹣x)=﹣log2(﹣x+1),
∴g(x)=﹣log2(﹣x+1)(x<0),
∴f(﹣7)=g(﹣7)=﹣log2(7+1)=﹣3,
∴g(﹣3)=﹣log2(3+1)=﹣2,
故选:D.
【考点精析】认真审题,首先需要了解函数的概念及其构成要素(函数三要素是定义域,对应法则和值域,而定义域和对应法则是起决定作用的要素,因为这二者确定后,值域也就相应得到确定,因此只有定义域和对应法则二者完全相同的函数才是同一函数).

练习册系列答案
相关题目

【题目】共享单车是指企业在校园、地铁站点、公交站点、居民区、商业区、公共服务区等提供自行车单车共享服务,是共享经济的一种新形态.一个共享单车企业在某个城市就“一天中一辆单车的平均成本(单位:元)与租用单车的数量(单位:千辆)之间的关系”进行调查研究,在调查过程中进行了统计,得出相关数据见下表:

租用单车数量(千辆)

2

3

4

5

8

每天一辆车平均成本(元)

3.2

2.4

2

1.9

1.7

根据以上数据,研究人员分别借助甲、乙两种不同的回归模型,得到两个回归方程,方程甲: ,方程乙: .

(1)为了评价两种模型的拟合效果,完成以下任务:

①完成下表(计算结果精确到0.1)(备注: ,称为相应于点的残差(也叫随机误差));

租用单车数量 (千辆)

2

3

4

5

8

每天一辆车平均成本 (元)

3.2

2.4

2

1.9

1.7

模型甲

估计值

2.4

2.1

1.6

残差

0

-0.1

0.1

模型乙

估计值

2.3

2

1.9

残差

0.1

0

0

②分别计算模型甲与模型乙的残差平方和,并通过比较的大小,判断哪个模型拟合效果更好.

(2)这个公司在该城市投放共享单车后,受到广大市民的热烈欢迎,共享单车常常供不应求,于是该公司研究是否增加投放.根据市场调查,这个城市投放8千辆时,该公司平均一辆单车一天能收入10元,6元收入的概率分别为0.6,0.4;投放1万辆时,该公司平均一辆单车一天能收入10元,6元收入的概率分别为0.4,0.6.问该公司应该投放8千辆还是1万辆能获得更多利润?(按(1)中拟合效果较好的模型计算一天中一辆单车的平均成本,利润=收入-成本).

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网