题目内容
(本小题满分12分)已知函数y=
cos2x+
sinxcosx+1,x∈R.
(1)求它的振幅、周期和初相;
(2)用五点法作出它的简图;
(3)该函数的图象可由y=sinx(x∈R)的图象经过怎样的平移和伸缩变换得到的?
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823223818138338.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823223818154449.png)
(1)求它的振幅、周期和初相;
(2)用五点法作出它的简图;
(3)该函数的图象可由y=sinx(x∈R)的图象经过怎样的平移和伸缩变换得到的?
(1)y=
cos2x+
sinxcosx+1的振幅为A=
,周期为T=
=π,初相为φ=
.
(2)令x1=2x+
,则y=
sin(2x+
)+
=
sinx1+
,列出下表,并描出图象如下图所示:
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408232238189343247.jpg)
(3)方法一:将函数图象依次作如下变换:
函数y=sinx的图象
函数y=sin(x+
)的图象
函数y=sin(2x+
)的图象
函数y=
sin(2x+
)的图象
函数y=
sin(2x+
)+
的图象,
即得函数y=
cos2x+
sinxcosx+1的图象.
方法二:函数y=sinx的图象
函数y=sin2x的图象
函数y=sin(2x+
)的图象
函数y=sin(2x+
)+
的
函数y=
sin(2x+
)+
的图象,
即得函数y=
cos2x+
sinxcosx+1的图象.
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823223818138338.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823223818154449.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823223818138338.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823223818232470.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823223818263420.png)
(2)令x1=2x+
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823223818263420.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823223818138338.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823223818263420.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823223818357352.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823223818138338.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823223818357352.png)
x | -![]() | ![]() | ![]() | ![]() | ![]() |
x1 | 0 | ![]() | π | ![]() | 2π |
y=sinx1 | 0 | 1 | 0 | -1 | 0 |
y=![]() ![]() ![]() | ![]() | ![]() | ![]() | ![]() | ![]() |
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408232238189343247.jpg)
(3)方法一:将函数图象依次作如下变换:
函数y=sinx的图象
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823223818965900.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823223818263420.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408232238189961614.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823223818263420.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408232238190591607.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823223818138338.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823223818263420.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823223819121877.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823223818138338.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823223818263420.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823223818357352.png)
即得函数y=
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823223818138338.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823223818154449.png)
方法二:函数y=sinx的图象
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408232238189961614.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823223819418924.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823223818263420.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823223819464876.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823223818263420.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823223819511368.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408232238190591607.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823223818138338.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823223818263420.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823223818357352.png)
即得函数y=
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823223818138338.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823223818154449.png)
本试题主要是考查了三角函数的作图和三角函数的图像的变换的综合运用。
注意五点法作图的重要性和熟练掌握,同时对于图像的变换可以先周期再平移,也可以先平移再周期,但是平移的量不同要注意区别。
解:y=
cos2x+
sinxcosx+1=
cos2x+
sin2x+![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823223818357352.png)
=
sin(2x+
)+
.
(1)y=
cos2x+
sinxcosx+1的振幅为A=
,周期为T=
=π,初相为φ=
.
(2)令x1=2x+
,则y=
sin(2x+
)+
=
sinx1+
,列出下表,并描出图象如下图所示:
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408232238213993247.jpg)
(3)方法一:将函数图象依次作如下变换:
函数y=sinx的图象
函数y=sin(x+
)的图象
函数y=sin(2x+
)的图象
函数y=
sin(2x+
)的图象
函数y=
sin(2x+
)+
的图象,
即得函数y=
cos2x+
sinxcosx+1的图象.
方法二:函数y=sinx的图象
函数y=sin2x的图象
函数y=sin(2x+
)的图象
函数y=sin(2x+
)+
的
函数y=
sin(2x+
)+
的图象,
即得函数y=
cos2x+
sinxcosx+1的图象.
注意五点法作图的重要性和熟练掌握,同时对于图像的变换可以先周期再平移,也可以先平移再周期,但是平移的量不同要注意区别。
解:y=
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823223818138338.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823223818154449.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823223820010303.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823223818887385.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823223818357352.png)
=
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823223818138338.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823223818263420.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823223818357352.png)
(1)y=
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823223818138338.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823223818154449.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823223818138338.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823223818232470.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823223818263420.png)
(2)令x1=2x+
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823223818263420.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823223818138338.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823223818263420.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823223818357352.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823223818138338.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823223818357352.png)
x | -![]() | ![]() | ![]() | ![]() | ![]() |
x1 | 0 | ![]() | π | ![]() | 2π |
y=sinx1 | 0 | 1 | 0 | -1 | 0 |
y=![]() ![]() ![]() | ![]() | ![]() | ![]() | ![]() | ![]() |
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408232238213993247.jpg)
(3)方法一:将函数图象依次作如下变换:
函数y=sinx的图象
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823223818965900.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823223818263420.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408232238189961614.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823223818263420.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408232238190591607.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823223818138338.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823223818263420.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823223819121877.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823223818138338.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823223818263420.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823223818357352.png)
即得函数y=
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823223818138338.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823223818154449.png)
方法二:函数y=sinx的图象
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408232238189961614.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823223819418924.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823223818263420.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823223819464876.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823223818263420.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823223819511368.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408232238190591607.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823223818138338.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823223818263420.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823223818357352.png)
即得函数y=
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823223818138338.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823223818154449.png)
![](http://thumb.zyjl.cn/images/loading.gif)
练习册系列答案
相关题目