题目内容

已知椭圆
x2
a2
+
y2
b2
=1(a>b>0)
的离心率为
6
3

(I)若原点到直线x+y-b=0的距离为
2
,求椭圆的方程;
(II)设过椭圆的右焦点且倾斜角为45°的直线l和椭圆交于A,B两点.
(i)当|AB|=
3
,求b的值;
(ii)对于椭圆上任一点M,若
OM
OA
OB
,求实数λ,μ满足的关系式.
分析:(I)由题意知b=2,a2=12,b2=4.由此可知椭圆的方程为
x2
12
+
y2
4
=1

(II)(i)由题意知椭圆的方程可化为:x2+3y2=3b2,AB:y=x-
2
b
,所以4x2-6
2
bx+3b2=0
.设A(x1,y1),B(x2,y2),|AB|=
(x2-x1)2+(y2-y1)2
=
(1+12)
72b2-48b2
42
=
2•
24b2
42
=
3
b=
3
,所以b=1.
(II)(ii)显然
OA
OB
可作为平面向量的一组基底,由平面向量基本定理,对于这一平面内的向量
OM
,有且只有一对实数λ,μ,使得等
OM
OA
OB
成立.同上经可知λ22=1.
解答:解:(I)∵d=
b
2
=
2
,∴b=2∵e=
c
a
=
6
3
,∴
c2
a2
=
2
3
∵a2-b2=c2,∴a2-4=
2
3
a2
解得a2=12,b2=4.
椭圆的方程为
x2
12
+
y2
4
=1
.(4分)
(II)(i)∵
c
a
=
6
3
,∴a2=3b2c2=
2
3
a2=2b2
.椭圆的方程可化为:x2+3y2=3b2
易知右焦点F(
2
b,0)
,据题意有AB:y=x-
2
b

由①,②有:4x2-6
2
bx+3b2=0

设A(x1,y1),B(x2,y2),|AB|=
(x2-x1)2+(y2-y1)2
=
(1+12)
72b2-48b2
42
=
2•
24b2
42
=
3
b=
3
∴b=1(8分)
(II)(ii)显然
OA
OB
可作为平面向量的一组基底,由平面向量基本定理,对于这一平面内的向量
OM
,有且只有一对实数λ,μ,使得等
OM
OA
OB
成立.
设M(x,y),∵(x,y)=λ(x1,y1)+μ(x2,y2),∴x=λx1+μx2,y=λy1+μy2
又点M在椭圆上,∴(λx1+μx22+3(λy1+μy22=3b2
由③有:x1+x2=
3
2
b
2
x1x2=
3b2
4

x1x2+3y1y2=x1x2+3(x1-
2
b)(x2-
2
b)=4x1x2-3
2
b(x1+x2)+6b2

3b2-9b2+6b2=0⑤
又A,B在椭圆上,故有x12+3y12=3b2,x22+3y22=3b2
将⑥,⑤代入④可得:λ22=1.(14分)
点评:本题考查圆锥曲线的位置关系和综合应用,解题时要认真审题,仔细解答.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网