题目内容
【题目】在直角坐标系中,曲线的参数方程为(为参数),为曲线上一动点,动点满足.
(1)求点轨迹的直角坐标方程;
(2)以坐标原点为极点,轴正半轴为极轴建立极坐标系,曲线的极坐标方程为,是上一个动点,求的最大值.
【答案】(1);(2)
【解析】
(1)设出点的参数坐标,根据向量关系,求得轨迹的参数方程,消参即可求得结果;
(2)求得的直角方程,根据椭圆的性质,即可容易求得结果.
(1)设点坐标为,点坐标为
因为,故可得,消参可得:.
故点的直角方程为:.
(2)因为曲线的极坐标方程为,
其直角坐标方程为,其圆心为,半径为;
又的右焦点为,
故的最大值为椭圆右焦点到椭圆上一点距离的最大值加半径.
由椭圆性质容易知椭圆右焦点到椭圆上一点距离的最大值为,
故的最大值为.
【题目】“黄梅时节家家雨”“梅雨如烟暝村树”“梅雨暂收斜照明”…江南梅雨的点点滴滴都流露着浓烈的诗情.每年六、七月份,我国长江中下游地区进入持续25天左右的梅雨季节,如图是江南镇2009~2018年梅雨季节的降雨量(单位:)的频率分布直方图,试用样本频率估计总体概率,解答下列问题:
(1)计算的值,并用样本平均数估计镇明年梅雨季节的降雨量;
(2)镇的杨梅种植户老李也在犯愁,他过去种植的甲品种杨梅,亩产量受降雨量的影响较大(把握超过八成).而乙品种杨梅这10年的亩产量(/亩)与降雨量的发生频数(年)如列联表所示(部分数据缺失).请你完善列联表,帮助老李排解忧愁,试想来年应种植哪个品种的杨梅受降雨量影响更小?并说明理由.
亩产量\降雨量 | 200~400之间 | 200~400之外 | 合计 |
2 | |||
1 | |||
合计 | 10 |
0.50 | 0.40 | 0.25 | 0.15 | 0.10 | |
0.455 | 0.708 | 1.323 | 2.072 | 2.703 |
(参考公式:)
【题目】针对时下的“抖音热”某校团委对“学生性别和喜欢抖音是否有关”作了一次调查,其中被调查的男女生人数相同,男生喜欢抖音的人数占男生人数的,女生喜欢抖音的人数占女生人数,若有的把握认为是否喜欢抖音和性别有关则调查人数中男生可能有( )人
附表:
0.050 | 0.010 | |
3.841 | 6.635 |
附:
A.20B.40C.60D.80
【题目】2020年春,新型冠状病毒在我国湖北武汉爆发并讯速蔓延,病毒传染性强并严重危害人民生命安全,国家卫健委果断要求全体人民自我居家隔离,为支援湖北武汉新型冠状病毒疫情防控工作,各地医护人员纷纷逆行,才使得病毒蔓延得到了有效控制.某社区为保障居民的生活不受影响,由社区志愿者为其配送蔬菜、大米等生活用品,记者随机抽查了男、女居民各100名对志愿者所买生活用品满意度的评价,得到下面的2×2列联表.
特别满意 | 基本满意 | |
男 | 80 | 20 |
女 | 95 | 5 |
(1)被调查的男性居民中有5个年轻人,其中有2名对志愿者所买生活用品特别满意,现在这5名年轻人中随机抽取3人,求至多有1人特别满意的概率.
(2)能否有99%的把握认为男、女居民对志愿者所买生活用品的评价有差异?
附: