题目内容
【题目】某大学对参加“社会实践活动”的全体志愿者进行学分考核,因该批志愿者表现良好,大学决定考核只有合格和优秀两个等次,若某志愿者考核合格,授予个学分;考核优秀,授予个学分,假设该大学志愿者甲、乙、丙考核优秀的概率为、、.他们考核所得的等次相互独立.
(1)求在这次考核中,志愿者甲、乙、丙三人中至少一名考核为优秀的概率;
(2)记在这次考核中甲、乙、丙三名志愿者所得学分之和为随机变量,求随机变量的分布列.
【答案】(1);(2)答案见解析.
【解析】
(1)计算出三人考核都不是优秀的概率,利用对立事件的概率公式可求得所求事件的概率;
(2)由题意可知,随机变量的可能取值有、、、,利用独立事件的概率乘法公式计算出在不同取值下的概率,可得出随机变量的分布列.
设甲考核优秀为事件,乙考核优秀为事件,丙考核优秀为事件,,,,且、、相互独立.
(1);
(2)的可能取值为、、、,
,
,
,
.
随机变量的分布列为
【题目】为迎接2022年北京冬季奥运会,普及冬奥知识,某校开展了“冰雪答题王”冬奥知识竞赛活动.现从参加冬奥知识竞赛活动的学生中随机抽取了100名学生,将他们的比赛成绩(满分为100分)分为6组:,,,,,,得到如图所示的频率分布直方图.
(1)求的值;
(2)估计这100名学生的平均成绩(同一组中的数据用该组区间的中点值为代表);
(3)在抽取的100名学生中,规定:比赛成绩不低于80分为“优秀”,比赛成绩低于80分为“非优秀”.请将下面的2×2列联表补充完整,并判断是否有99.9%的把握认为“比赛成绩是否优秀与性别有关”?
优秀 | 非优秀 | 合计 | |
男生 | 40 | ||
女生 | 50 | ||
合计 | 100 |
参考公式及数据:
0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 | |
2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
【题目】白塔中学为了解校园爱国卫生系列活动的成效,对全校学生进行了一次卫生意识测试,根据测试成绩评定“合格”“不合格”两个等级,同时对相应等级进行量化:“合格”记5分,“不合格”记0分.现随机抽取部分学生的答卷,统计结果及对应的频率分布直方图如下:
等级 | 不合格 | 合格 | ||
得分 | ||||
频数 | 6 | 24 |
(1)求统计表、直方图中的a,b,c的值;
(2)用分层抽样的方法,从等级为“合格”和“不合格”的学生中抽取10人进行座谈.现再从这10人中任选4人,记所选4人的量化总分为,求的数学期望.