题目内容

(本小题满分12分)
若函数为奇函数,当时,(如图).

(Ⅰ)求函数的表达式,并补齐函数的图象;
(Ⅱ)用定义证明:函数在区间上单调递增.
(1)(2)利用定义法,设变量,作差,变形,定号,下结论。

试题分析:解:(Ⅰ) 任取,则为奇函数,
………………………4分
综上所述,…………………………………………5分
补齐图象。(略)…………………………………………6分
(Ⅱ)任取,且,…………………………………7分
………………………………8分


…………………………………10分
 ∴
又由,且,所以,∴

,即………………………………………11分
∴函数在区间上单调递增。…………………………12分
点评:解决该试题利用奇函数关于原点的对称性求解函数图像,同时能利用单调性的定义法证明单调性。属于基础题。
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网