题目内容
【题目】设A、B为抛物线C:上两点,A与B的中点的横坐标为2,直线AB的斜率为1.
(Ⅰ)求抛物线C的方程;
(Ⅱ)直线 交x轴于点M,交抛物线C:于点P,M关于点P的对称点为N,连结ON并延长交C于点H.除H以外,直线MH与C是否有其他公共点?请说明理由.
【答案】(1); (2)见解析.
【解析】
(Ⅰ)设 ,直线的斜率为1,又因为都在曲线上 , ,结合利用点差法可得p = 2,从而可得结果;(Ⅱ)求得点的坐标分别为,,, 从而可得直线的方程为,联立方程解得点的坐标为,可得直线的方程为,联立方程,整理得,由,可得结论.
(Ⅰ)设 ,AB 直线的斜率为1,又因为A,B都在曲线C上,
所以 ① ②
-得,
由已知条件得,得p = 2,所以抛物线C的方程是.
(Ⅱ)由题意,可知点的坐标分别为,,,
从而可得直线的方程为,联立方程,
解得. 依题意,点的坐标为,由于,,可得直线的方程为,
联立方程,整理得,
则,从而可知和只有一个公共点.
【题目】菜农定期使用低害杀虫农药对蔬菜进行喷洒,以防止害虫的危害,但采集上市时蔬菜仍存有少量的残留农药,食用时需要用清水清洗干净,下表是用清水x(单位:千克)清洗该蔬菜1千克后,蔬菜上残留的农药y(单位:微克)的数据作了初步处理,得到下面的散点图及一些统计量的值.
y(微克)
x(千克)
| ||||||
3 | 38 | 11 | 10 | 374 | -121 | -751 |
其中
(I)根据散点图判断,与,哪一个适宜作为蔬菜农药残量与用水量的回归方程类型(给出判断即可,不必说明理由);
(Ⅱ)若用解析式
(Ⅲ)对于某种残留在蔬菜上的农药,当它的残留量低于20微克时对人体无害,为了放心食用该蔬菜,请估计需要用多少千克的清水清洗一千克蔬菜?(精确到0.1,参考数据)
附:参考公式:回归方程中斜率和截距的最小二乘估计公式分别为: