题目内容
14.一个三棱锥的三视图如图所示,其中俯视图为等腰直角三角形,正视图和侧视图是全等的等腰三角形,则此三棱外接球的表面积为( )A. | 16π | B. | 9π | C. | 4π | D. | π |
分析 由题意,确定三棱锥的形状,设三棱锥外接球的半径为r,则r2=(2-r)2+($\sqrt{2}$)2,求出r,即可求出三棱锥外接球的表面积.
解答 解:由题意,三棱锥的一个侧面垂直于底面,底面是等腰直角三角形,顶点在底面中的射影是底面斜边的中点,
设三棱锥外接球的半径为r,则r2=(2-r)2+($\sqrt{2}$)2,
∴r=$\frac{3}{2}$,
∴三棱锥外接球的表面积为4π×$\frac{9}{4}$=9π,
故选:B.
点评 本题考查球和几何体之间的关系,本题解题的关键是确定三棱锥外接球的半径,从而得到外接球的表面积.
练习册系列答案
相关题目
15.设α,β是两个不同的平面,l,m是两条不同的直线,且l?α,m?β,( )
A. | 若l⊥β,则α⊥β | B. | 若α⊥β,则l⊥m | C. | 若l∥β,则α∥β | D. | 若α∥β,则l∥m |
3.已知点A(1,2)在抛物线C:y2=4x上,过点A作两条直线分别交抛物线于点D,E,直线AD,AE的斜率分别为kAD,KAE.若直线DE过点(-1,-2),则kAD•kAE=( )
A. | 4 | B. | 3 | C. | 2 | D. | 1 |
9.已知A,B分别为椭圆$\frac{x{\;}^{2}}{a{\;}^{2}}$+$\frac{y{\;}^{2}}{b{\;}^{2}}$=1(a>b>0)的右顶点和上顶点,直线y=kx(k>0)与椭圆交于C,D两点,若四边形ABCD的面积最大值为2c2,则椭圆的离心率为( )
A. | $\frac{1}{3}$ | B. | $\frac{1}{2}$ | C. | $\frac{\sqrt{3}}{3}$ | D. | $\frac{\sqrt{2}}{2}$ |
6.安排A、B、C、D、E、F六名义工照顾甲、乙、丙三位老人,每两位义工照顾一位老人,考虑到义工与老人住址距离问题,义工A不安排照顾老人甲,义工B不安排照顾老人乙,安排方法有( )种.
A. | 30 | B. | 40 | C. | 42 | D. | 48 |
3.在△ABC中,A、B、C的对边分别为a、b、c,且bcosC=3acosB-ccosB,$\overrightarrow{BA}$•$\overrightarrow{BC}$=2,则△ABC的面积为( )
A. | $\sqrt{2}$ | B. | $\frac{3}{2}$ | C. | 2$\sqrt{2}$ | D. | 4$\sqrt{2}$ |