题目内容

17.已知数列{an}各项均为正,且a1=1,an+1an+an+1-an=0(n∈N*
(1)设bn=$\frac{1}{{a}_{n}}$,求证:数列{bn}是等差数列;
(2)求数列{$\frac{{a}_{n}}{n+1}$}的前n项和.

分析 (1)由于数列{an}各项均为正,且a1=1,an+1an+an+1-an=0(n∈N*),可得$\frac{1}{{a}_{n+1}}-\frac{1}{{a}_{n}}$=1,即bn+1-bn=1.即可证明.
(2)利用等差数列的通项公式及“裂项求和”即可得出.

解答 (1)证明:∵数列{an}各项均为正,且a1=1,an+1an+an+1-an=0(n∈N*),
∴$\frac{1}{{a}_{n+1}}-\frac{1}{{a}_{n}}$=1,即bn+1-bn=1.
∴数列{bn}是等差数列,首项为1,公差为1;
(2)解:由(1)可得:bn=1+(n-1)=n.
∴an=$\frac{1}{n}$.
∴$\frac{{a}_{n}}{n+1}$=$\frac{1}{n(n+1)}$=$\frac{1}{n}-\frac{1}{n+1}$.
∴数列{$\frac{{a}_{n}}{n+1}$}的前n项和Sn=$(1-\frac{1}{2})+(\frac{1}{2}-\frac{1}{3})$+…+$(\frac{1}{n}-\frac{1}{n+1})$=1-$\frac{1}{n+1}$=$\frac{n}{n+1}$.

点评 本题考查了等差数列的通项公式、“裂项求和”,考查了变形能力、推理能力与计算能力,属于中档题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网