题目内容
设关于的一元二次方程.
(1)若,都是从集合中任取的数字,求方程有实根的概率;
(2)若是从区间[0,4]中任取的数字,是从区间[1,4]中任取的数字,求方程有实根的概率.
(1)(2)
解析试题分析:(1)设事件A=“方程有实根”,记为取到的一种组合,则所有的情况有:
(1,1),(1,2),(1,3),(1,4),(2,1),(2,2),(2,3),(2,4)
(3,1),(3,2),(3,3),(3,4),(4,1),(4,2),(4,3),(4,4) ……2分
一共16种且每种情况被取到的可能性相同, ……3分
∵关于的一元二次方程有实根,
∴ ……4分
∴事件A包含的基本事件有:
(1,1),(2,1),(2,2),(3,1),(3,2),(3,3),(4,1),
(4,2),(4,3),(4,4)共10种, ……5分
,
∴方程有实根的概率是. ……6分
(2)设事件B=“方程有实根”,记为取到的一种组合,
∵是从区间[0,4]中任取的数字,是从区间[1,4]中任取的数字,
∴点所在区域是长为4,宽为3的矩形区域,如图所示:
……9分
又满足:的点的区域是如图所示的阴影部分,
∴,
∴方程有实根的概率是. ……12分
考点:本小题主要考查古典概型和几何概型.
点评:古典概型要求每个基本事件都是等可能发生的,而几何概型包括与长度、面积、体积、角度等有关的几类问题,要正确区分,灵活转化,仔细计算.
(本小题满分13分)为增强市民交通规范意识,我市面向全市征召劝导员志愿者,分布于各候车亭或十字路口处.现从符合条件的500名志愿者中随机抽取100名志愿者,他们的年龄情况如下表所示.
(1)频率分布表中的①、②位置应填什么数据?并在答题卡中补全频率分布直方图(如图),再根据频率分布直方图估计这500名志愿者中年龄在[30,35)岁的人数;
(2)在抽出的100名志愿者中按年龄再采用分层抽样法抽取20人参加“规范摩的司机的交通意识”培训活动,从这20人中选取2名志愿者担任主要负责人,记这2名志愿者中“年龄低于30岁”的人数为X,求X的分布列及数学期望.
分组(单位:岁) | 频数 | 频率 |
[20,25) | 5 | 0.05 |
[25,30) | ① | 0.20 |
[30,35) | 35 | ② |
[35,40) | 30 | 0.30 |
[40,45] | 10 | 0.10 |
合计 | 100 | 1.00 |