题目内容

已知函数f(x)=2x-x2,x∈[4,5],对于f(x)值域内的所有实数m,满足不等式t2+mt+4>2m+4t恒成立t的集合是(  )
A.(-∞,-5)B.(-∞,-2)∪(5,+∞)
C.(-∞,-5)∪(2,+∞)D.(-∞,-5)∪(-2,+∞)
f′(x)=2xln2-2x,[f′(x)]′=2xln22-2,
因为ln2>ln
e
=
1
2
,所以当x≥4时,[f′(x)]′=2xln22-2≥24ln22-2>0,
故f′(x)在[4,5]上递增,且f′(x)≥f′(4)=24ln2-2×4>0,
所以f(x)在[4,5]上递增,所以f(x)min=f(4)=0,f(x)max=f(5)=7,即m∈[0,7].
t2+mt+4>2m+4t恒成立即(t-2)m+t2-4t+4>0对任意m∈[0,7]恒成立,令g(m)=(t-2)m+t2-4t+4,
则有
g(0)>0
g(7)>0
,即
t2-4t+4>0
(t-2)•7+t2-4t+4>0
,解得t<-5,或t>2,
故选C.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网