题目内容
【题目】设数列的前项和,对任意,都有(为常数).
(1)当时,求;
(2)当时,
(ⅰ)求证:数列是等差数列;
(ⅱ)若数列为递增数列且,设,试问是否存在正整数(其中),使成等比数列?若存在,求出所有满足条件的数组;若不存在,说明理由.
【答案】(1)(2)(ⅰ)证明见解析(ⅱ)存在唯一正整数数对,使成等比数列
【解析】
(1)当时,利用公式计算得到,再计算得到.
(2)(ⅰ)化简得到,得到,化简得到
得到答案.
(2)(ⅱ)计算,假设存在正整数数组,则当,且时,,故数列为递减数列,为方程的一组解,得到答案.
(1)时,①
时,②
由②-①得即
时,,∴
(常数,),∴以1为首项,4为公比的等比数列
∴
(2)(ⅰ)当,,时,.③
当时,.④
③-④得:,⑤
所以.⑥
⑤-⑥得:.
因为,所以,即,
所以是等差数列.
(ⅱ)因为为递增等差数列.,又
得或者(舍),所以
假设存在正整数数组,使成等比数列,则成等差数列,
于是,
所以,(☆)
易知为方程(☆)的一组解.
当,且时,,故数列为递减数列,
于是,所以此时方程(☆)无正整数解.
综上,存在唯一正整数数对,使成等比数列.
【题目】已知表1和表2是某年部分日期的天安门广场升旗时刻表.
表1:某年部分日期的天安门广场升旗时刻表
日期 | 升旗时刻 | 日期 | 升旗时刻 | 日期 | 升旗时刻 | 日期 | 升旗时刻 |
1月1日 | 7:36 | 4月9日 | 5:46 | 7月9日 | 4:53 | 10月8日 | 6:17 |
1月21日 | 7:31 | 4月28日 | 5:19 | 7月27日 | 5:07 | 10月26日 | 6:36 |
2月10日 | 7:14 | 5月16日 | 4:59 | 8月14日 | 5:24 | 11月13日 | 6:56 |
3月2日 | 6:47 | 6月3日 | 4:47 | 9月2日 | 5:42 | 12月1日 | 7:16 |
3月22日 | 6:15 | 6月22日 | 4:46 | 9月20日 | 5:59 | 12月20日 | 7:31 |
表2:某年2月部分日期的天安门广场升旗时刻表
日期 | 升旗时刻 | 日期 | 升旗时刻 | 日期 | 升旗时刻 |
2月1日 | 7:23 | 2月11日 | 7:13 | 2月21日 | 6:59 |
2月3日 | 7:22 | 2月13日 | 7:11 | 2月23日 | 6:57 |
2月5日 | 7:20 | 2月15日 | 7:08 | 2月25日 | 6:55 |
2月7日 | 7:17 | 2月17日 | 7:05 | 2月27日 | 6:52 |
2月9日 | 7:15/p> | 2月19日 | 7:02 | 2月28日 | 6:49 |
(1)从表1的日期中随机选出一天,试估计这一天的升旗时刻早于7:00的概率;
(2)甲,乙二人各自从表2的日期中随机选择一天观看升旗,且两人的选择相互独立.记为这两人中观看升旗的时刻早于7:00的人数,求的分布列和数学期望.
(3)将表1和表2中的升旗时刻化为分数后作为样本数据(如7:31化为).记表2中所有升旗时刻对应数据的方差为,表1和表2中所有升旗时刻对应数据的方差为,判断与的大小(只需写出结论)
【题目】“开门大吉”是某电视台推出的游戏节目,选手面对1号8扇大门,依次按响门上的门铃,门铃会播放一段音乐(将一首经典流行歌曲以单音色旋律的方式演绎),选手需正确回答出这首歌的名字,方可获得该扇门对应的家庭梦想基金,在一次场外调查中,发现参赛选手多数分为两个年龄段: ; (单位:岁),其猜对歌曲名称与否的人数如图所示.
(Ⅰ)写出列联表;判断是否有的把握认为猜对歌曲名称是否与年龄有关;说明你的理由;(如表的临界值表供参考)
0.10 | 0.05 | 0.010 | 0.005 | |
2.706 | 3.841 | 6.635 | 7.879 |
(Ⅱ)现计划在这次场外调查中按年龄段用分层抽样的方法选取6名选手,并抽取3名幸运选手,求3名幸运选手中恰好有一人在岁之间的概率.
(参考公式: ,其中)