题目内容
【题目】已知函数f(x)=( + )x3(a>0,a≠1).
(1)讨论函数f(x)的奇偶性;
(2)求a的取值范围,使f(x)+f(2x)>0在其定义域上恒成立.
【答案】
(1)解:定义域为(﹣∞,0)∪(0,+∞),
∵f(﹣x)=( + )(﹣x)3=﹣( + )x3=( + )=f(x)
∴f(x)是偶函数.
(2)解:∵函数f(x)在定义域上是偶函数,
∴函数y=f(2x)在定义域上也是偶函数,
∴当x∈(0,+∞)时,f(x)+f(2x)>0可满足题意,
∵当x∈(0,+∞)时,x3>0,
∴只需 + + + >0,即 >0,
∵a2x+ax+1>0,
∴(ax)2﹣1>0,解得a>1,
∴当a>1时,f(x)+f(2x)>0在定义域上恒成立.
【解析】(1)由可推知f(﹣x)=f(x),从而可判断函数f(x)的奇偶性;(2)利用(1)知f(x)为偶函数,可知当x∈(0,+∞)时,x3>0,从而可判知,要使f(x)+f(2x)>0在其定义域上恒成立,只需当a>1时即可.
【考点精析】利用函数的奇偶性对题目进行判断即可得到答案,需要熟知偶函数的图象关于y轴对称;奇函数的图象关于原点对称.
练习册系列答案
相关题目
【题目】某种零件按质量标准分为1,2,3,4,5五个等级,现从批该零件中随机抽取20个,对其等级进行统计分析,得到频率分布表如下:
等级 | 1 | 2 | 3 | 4 | 5 |
频率 | 0.05 | m | 0.15 | 0.35 | n |
(1)在抽取的20个零件中,等级为5的恰有2个,求m,n的值;
(2)在(1)的条件下,从等级为3和5的所有零件中,任意抽取2个,求抽取的2个零件等级不相同的概率.