题目内容
在四面体P-ABC中,PA,PB,PC两两垂直,M是面ABC内一点,M到三个面PAB,PBC,PCA的距离分别是2,3,6,则M到P的距离是( )
A、7 | B、8 | C、9 | D、10 |
分析:由题意画出图形,M到P的距离是,图形中长方体的对角线的长,求解即可.
解答:解:由于PA,PB,PC两两垂直,M是面ABC内一点,
作出长方体如图,
M到三个面PAB,PBC,PCA的距离分别是2,3,6,则M到P的距离,
就是长方体的体对角线的长:
=7
故选A.
作出长方体如图,
M到三个面PAB,PBC,PCA的距离分别是2,3,6,则M到P的距离,
就是长方体的体对角线的长:
22+32+ 62 |
故选A.
点评:本题考查棱锥的结构特征,点、线、面间的距离计算,考查空间想象能力,计算能力,作图能力,逻辑思维能力,是基础题
练习册系列答案
相关题目