题目内容
【题目】已知等差数列的前n项和为,,公差为
若,求数列的通项公式;
是否存在d,n使成立?若存在,试找出所有满足条件的d,n的值,并求出数列的通项公式;若不存在,请说明理由.
【答案】(1);(2)见解析
【解析】
由已知求得公差,直接代入等差数列的通项公式得答案;由,得到,然后依次取n值,求得d,分类分析即可得到所有满足条件的d,n的值,并求得通项公式.
当时,由,得,即.
;
由题意可知,,
即,.
令时,得,不合题意;
时,得,符合.
此时数列的通项公式为;
时,得,不合题意;
时,得,符合.
此时数列的通项公式为;
时,得,符合.
此时数列的通项公式为;
时,得,不合题意;
时,得,不合题意;
时,得,不合题意;
时,,均不合题意.
存在3组,其解与相应的通项公式分别为:
,,;
,,;
,,.
练习册系列答案
相关题目
【题目】某品牌手机厂商推出新款的旗舰机型,并在某地区跟踪调查得到这款手机上市时间(第周)和市场占有率()的几组相关数据如下表:
(1)根据表中的数据,用最小二乘法求出关于的线性回归方程;
(2)根据上述线性回归方程,预测在第几周,该款旗舰机型市场占有率将首次超过(最后结果精确到整数).
参考公式:,.