题目内容
【题目】己知椭圆的离心率为,分别是椭圈的左、右焦点,椭圆的焦点到双曲线渐近线的距离为.
(1)求椭圆的方程;
(2)直线与椭圆交于两点,以线段为直径的圆经过点,且原点到直线的距离为,求直线的方程.
【答案】(1);(2).
【解析】
(1)利用焦点到双曲线渐近线距离为可求得;根据离心率可求得;由求得后即可得到所求方程;(2)由原点到直线距离可得;将直线方程与椭圆方程联立,整理得到韦达定理的形式;根据圆的性质可知,由向量坐标运算可整理得,从而构造出方程组,结合求得结果.
(1)由题意知,,
双曲线方程知,其渐近线方程为:
焦点到双曲线渐近线距离:,解得:
由椭圆离心率得:
椭圆的方程为:
(2)原点到直线距离为:,整理得:
设,
由得:
则,即:
,
以为直径的圆过点
又 ,
即:
由且得:,满足
直线方程为:
练习册系列答案
相关题目
【题目】年以来精准扶贫政策的落实,使我国扶贫工作有了新进展,贫困发生率由年底的下降到年底的,创造了人类减贫史上的的中国奇迹.“贫困发生率”是指低于贫困线的人口占全体人口的比例,年至年我国贫困发生率的数据如下表:
年份 | 2012 | 2013 | 2014 | 2015 | 2016 | 2017 | 2018 |
贫困发生率 | 10.2 | 8.5 | 7.2 | 5.7 | 4.5 | 3.1 | 1.4 |
(1)从表中所给的个贫困发生率数据中任选两个,求两个都低于的概率;
(2)设年份代码,利用线性回归方程,分析年至年贫困发生率与年份代码的相关情况,并预测年贫困发生率.
附:回归直线的斜率和截距的最小二乘估计公式分别为:
(的值保留到小数点后三位)