题目内容
【题目】如图,某小区准备将闲置的一直角三角形地块开发成公共绿地,图中.设计时要求绿地部分(如图中阴影部分所示)有公共绿地走道,且两边是两个关于走道对称的三角形(和).现考虑方便和绿地最大化原则,要求点与点均不重合,落在边上且不与端点重合,设.
(1)若,求此时公共绿地的面积;
(2)为方便小区居民的行走,设计时要求的长度最短,求此时绿地公共走道的长度.
【答案】(1);(2).
【解析】分析:(1)由题意可得,,则;
(2)由题意可得 ,由正弦定理有 ,记,结合三角函数的性质可得时,取最大,最短,则此时.
详解:(1)由图得: ∴,
又 ∴ ∴,
∴;
(2)由图得:且 ,
∴ ,
在中,由正弦定理可得: ,
∴ ,
记
,
又 ,∴ ,
∴时,取最大,最短,则此时.
练习册系列答案
相关题目